src/active_exploration_engine.erl

-module(active_exploration_engine).
-behaviour(gen_server).

%% Active Exploration and Discovery Engine
%% Sophisticated exploration system that enables autonomous agents to:
%% - Actively explore their environment with purpose and curiosity
%% - Discover new patterns, opportunities, and knowledge
%% - Optimize exploration strategies based on discovery outcomes
%% - Balance exploration vs exploitation trade-offs
%% - Form and test hypotheses about the environment
%% - Generate and pursue curiosity-driven investigations
%% - Coordinate exploration with other cognitive processes

-export([start_link/1,
         % Core exploration functions
         initiate_exploration/3, execute_exploration_strategy/3, evaluate_exploration_outcome/3,
         adaptive_exploration/2, curiosity_driven_exploration/2, hypothesis_driven_exploration/3,
         % Discovery and investigation
         investigate_anomaly/3, explore_knowledge_gap/2, discover_environmental_patterns/2,
         test_environmental_hypothesis/3, investigate_causal_relationships/3,
         % Exploration strategy management
         select_exploration_strategy/2, optimize_exploration_parameters/2,
         balance_exploration_exploitation/2, coordinate_exploration_activities/2,
         % Novelty and surprise processing
         detect_environmental_novelty/2, process_surprising_observations/3,
         generate_exploration_hypotheses/2, validate_exploration_discoveries/3,
         % Multi-modal exploration
         explore_spatial_environment/2, explore_temporal_patterns/2,
         explore_conceptual_space/2, explore_social_environment/2,
         % Active learning and experimentation
         design_exploration_experiments/3, conduct_exploration_experiments/2,
         analyze_experimental_results/3, iterative_hypothesis_refinement/3,
         % Exploration coordination
         coordinate_with_goal_formation/2, coordinate_with_learning/2,
         coordinate_with_reasoning/2, integrate_exploration_insights/2]).

-export([init/1, handle_call/3, handle_cast/2, handle_info/2, 
         terminate/2, code_change/3]).

%% Exploration and discovery data structures
-record(exploration_strategy, {
    strategy_id,                       % Unique strategy identifier
    strategy_type,                     % Type of exploration strategy
    strategy_name,                     % Human-readable name
    strategy_parameters = #{},         % Parameters for the strategy
    exploration_scope,                 % Scope of exploration (spatial, temporal, conceptual)
    exploration_depth = 3,             % Depth of exploration (1-10)
    exploration_breadth = 5,           % Breadth of exploration (1-10)
    resource_requirements = #{},       % Resources needed for this strategy
    expected_discovery_types = [],     % Types of discoveries expected
    success_criteria = [],             % Criteria for successful exploration
    risk_assessment = #{},             % Risk analysis for the strategy
    effectiveness_history = [],        % History of strategy effectiveness
    adaptation_rules = [],             % Rules for adapting the strategy
    coordination_requirements = []     % Requirements for coordinating with other processes
}).

-record(exploration_target, {
    target_id,                         % Unique target identifier
    target_type,                       % Type of exploration target
    target_description,                % Description of what to explore
    target_location,                   % Location (spatial, conceptual, etc.)
    novelty_score = 0.5,              % How novel this target is (0-1)
    importance_score = 0.5,            % How important exploring this is (0-1)
    accessibility_score = 0.5,         % How accessible the target is (0-1)
    exploration_difficulty = 0.5,      % Difficulty of exploring (0-1)
    resource_requirements = #{},       % Resources needed to explore
    previous_exploration_attempts = [], % Previous attempts to explore this
    expected_insights = [],            % Expected insights from exploration
    related_targets = [],              % Other targets related to this one
    discovery_potential = 0.5          % Potential for making discoveries (0-1)
}).

-record(exploration_discovery, {
    discovery_id,                      % Unique discovery identifier
    discovery_type,                    % Type of discovery made
    discovery_content,                 % Content of the discovery
    discovery_context,                 % Context in which discovery was made
    novelty_level = 0.5,              % How novel the discovery is (0-1)
    significance_level = 0.5,          % How significant the discovery is (0-1)
    confidence_level = 0.5,            % Confidence in the discovery (0-1)
    verification_status = unverified,  % Verification status
    supporting_evidence = [],          % Evidence supporting the discovery
    contradicting_evidence = [],       % Evidence contradicting the discovery
    implications = [],                 % Implications of the discovery
    follow_up_explorations = [],       % Suggested follow-up explorations
    integration_requirements = [],     % Requirements for integrating discovery
    discovery_timestamp,               % When discovery was made
    discovery_location                 % Where discovery was made
}).

-record(curiosity_state, {
    current_curiosity_level = 0.5,     % Current level of curiosity (0-1)
    curiosity_triggers = [],           % Current triggers of curiosity
    areas_of_interest = [],            % Current areas of high interest
    boredom_indicators = [],           % Indicators of boredom
    surprise_history = [],             % Recent surprising observations
    novelty_seeking_tendency = 0.5,    % Tendency to seek novelty (0-1)
    exploration_motivation = 0.5,      % Current motivation to explore (0-1)
    attention_focus = undefined,       % Current focus of exploratory attention
    curiosity_satisfaction_level = 0.5 % How satisfied curiosity currently is (0-1)
}).

-record(exploration_state, {
    agent_id,                          % Associated agent
    active_explorations = #{},         % Currently active explorations
    exploration_strategies = [],       % Available exploration strategies
    exploration_targets = #{},         % Current exploration targets
    exploration_discoveries = [],      % Recent discoveries made
    curiosity_state = #curiosity_state{}, % Current curiosity state
    exploration_history = [],          % History of exploration activities
    hypothesis_tracking = #{},         % Tracking of exploration hypotheses
    surprise_accumulator = [],         % Accumulated surprising observations
    novelty_detector = #{},            % State of novelty detection
    exploration_performance = #{},     % Performance metrics for exploration
    coordination_state = #{},          % Coordination with other cognitive processes
    learning_from_exploration = #{},   % Learning accumulated from exploration
    exploration_preferences = #{}      % Learned preferences about exploration
}).

%%====================================================================
%% API functions
%%====================================================================

start_link(Config) ->
    AgentId = maps:get(agent_id, Config, generate_exploration_id()),
    io:format("[EXPLORATION] Starting active exploration engine for agent ~p~n", [AgentId]),
    gen_server:start_link(?MODULE, [AgentId, Config], []).

%% Core exploration functions
initiate_exploration(ExplorationPid, ExplorationTarget, Context) ->
    gen_server:call(ExplorationPid, {initiate_exploration, ExplorationTarget, Context}).

execute_exploration_strategy(ExplorationPid, Strategy, Target) ->
    gen_server:call(ExplorationPid, {execute_exploration_strategy, Strategy, Target}).

evaluate_exploration_outcome(ExplorationPid, ExplorationId, Outcome) ->
    gen_server:call(ExplorationPid, {evaluate_exploration_outcome, ExplorationId, Outcome}).

adaptive_exploration(ExplorationPid, AdaptationContext) ->
    gen_server:call(ExplorationPid, {adaptive_exploration, AdaptationContext}).

curiosity_driven_exploration(ExplorationPid, CuriosityTrigger) ->
    gen_server:call(ExplorationPid, {curiosity_driven_exploration, CuriosityTrigger}).

hypothesis_driven_exploration(ExplorationPid, Hypothesis, TestingStrategy) ->
    gen_server:call(ExplorationPid, {hypothesis_driven_exploration, Hypothesis, TestingStrategy}).

%% Discovery and investigation
investigate_anomaly(ExplorationPid, Anomaly, InvestigationScope) ->
    gen_server:call(ExplorationPid, {investigate_anomaly, Anomaly, InvestigationScope}).

explore_knowledge_gap(ExplorationPid, KnowledgeGap) ->
    gen_server:call(ExplorationPid, {explore_knowledge_gap, KnowledgeGap}).

discover_environmental_patterns(ExplorationPid, SearchCriteria) ->
    gen_server:call(ExplorationPid, {discover_environmental_patterns, SearchCriteria}).

test_environmental_hypothesis(ExplorationPid, Hypothesis, TestDesign) ->
    gen_server:call(ExplorationPid, {test_environmental_hypothesis, Hypothesis, TestDesign}).

investigate_causal_relationships(ExplorationPid, CausalHypothesis, InvestigationMethod) ->
    gen_server:call(ExplorationPid, {investigate_causal_relationships, CausalHypothesis, InvestigationMethod}).

%% Exploration strategy management
select_exploration_strategy(ExplorationPid, SelectionCriteria) ->
    gen_server:call(ExplorationPid, {select_exploration_strategy, SelectionCriteria}).

optimize_exploration_parameters(ExplorationPid, OptimizationObjective) ->
    gen_server:call(ExplorationPid, {optimize_exploration_parameters, OptimizationObjective}).

balance_exploration_exploitation(ExplorationPid, BalancingContext) ->
    gen_server:call(ExplorationPid, {balance_exploration_exploitation, BalancingContext}).

coordinate_exploration_activities(ExplorationPid, CoordinationRequest) ->
    gen_server:call(ExplorationPid, {coordinate_exploration_activities, CoordinationRequest}).

%% Novelty and surprise processing
detect_environmental_novelty(ExplorationPid, EnvironmentalInput) ->
    gen_server:call(ExplorationPid, {detect_environmental_novelty, EnvironmentalInput}).

process_surprising_observations(ExplorationPid, Observation, ExpectedOutcome) ->
    gen_server:cast(ExplorationPid, {process_surprising_observations, Observation, ExpectedOutcome}).

generate_exploration_hypotheses(ExplorationPid, ObservationContext) ->
    gen_server:call(ExplorationPid, {generate_exploration_hypotheses, ObservationContext}).

validate_exploration_discoveries(ExplorationPid, Discovery, ValidationCriteria) ->
    gen_server:call(ExplorationPid, {validate_exploration_discoveries, Discovery, ValidationCriteria}).

%% Multi-modal exploration
explore_spatial_environment(ExplorationPid, SpatialContext) ->
    gen_server:call(ExplorationPid, {explore_spatial_environment, SpatialContext}).

explore_temporal_patterns(ExplorationPid, TemporalContext) ->
    gen_server:call(ExplorationPid, {explore_temporal_patterns, TemporalContext}).

explore_conceptual_space(ExplorationPid, ConceptualContext) ->
    gen_server:call(ExplorationPid, {explore_conceptual_space, ConceptualContext}).

explore_social_environment(ExplorationPid, SocialContext) ->
    gen_server:call(ExplorationPid, {explore_social_environment, SocialContext}).

%% Active learning and experimentation
design_exploration_experiments(ExplorationPid, ExperimentObjective, Constraints) ->
    gen_server:call(ExplorationPid, {design_exploration_experiments, ExperimentObjective, Constraints}).

conduct_exploration_experiments(ExplorationPid, ExperimentDesign) ->
    gen_server:call(ExplorationPid, {conduct_exploration_experiments, ExperimentDesign}).

analyze_experimental_results(ExplorationPid, ExperimentId, Results) ->
    gen_server:call(ExplorationPid, {analyze_experimental_results, ExperimentId, Results}).

iterative_hypothesis_refinement(ExplorationPid, HypothesisId, RefinementData) ->
    gen_server:call(ExplorationPid, {iterative_hypothesis_refinement, HypothesisId, RefinementData}).

%% Exploration coordination
coordinate_with_goal_formation(ExplorationPid, GoalFormationRequest) ->
    gen_server:call(ExplorationPid, {coordinate_with_goal_formation, GoalFormationRequest}).

coordinate_with_learning(ExplorationPid, LearningRequest) ->
    gen_server:call(ExplorationPid, {coordinate_with_learning, LearningRequest}).

coordinate_with_reasoning(ExplorationPid, ReasoningRequest) ->
    gen_server:call(ExplorationPid, {coordinate_with_reasoning, ReasoningRequest}).

integrate_exploration_insights(ExplorationPid, InsightIntegrationRequest) ->
    gen_server:call(ExplorationPid, {integrate_exploration_insights, InsightIntegrationRequest}).

%%====================================================================
%% gen_server callbacks
%%====================================================================

init([AgentId, Config]) ->
    process_flag(trap_exit, true),
    
    io:format("[EXPLORATION] Initializing active exploration engine for agent ~p~n", [AgentId]),
    
    % Initialize exploration strategies
    ExplorationStrategies = initialize_exploration_strategies(Config),
    
    % Initialize curiosity state
    CuriosityState = initialize_curiosity_state(Config),
    
    % Initialize novelty detection
    NoveltyDetector = initialize_novelty_detector(Config),
    
    State = #exploration_state{
        agent_id = AgentId,
        exploration_strategies = ExplorationStrategies,
        curiosity_state = CuriosityState,
        novelty_detector = NoveltyDetector
    },
    
    % Start exploration cycles
    schedule_exploration_cycle(),
    schedule_curiosity_cycle(),
    schedule_discovery_analysis_cycle(),
    
    {ok, State}.

handle_call({initiate_exploration, ExplorationTarget, Context}, _From, State) ->
    io:format("[EXPLORATION] Initiating exploration of target: ~p~n", [ExplorationTarget]),
    
    % Analyze exploration target
    TargetAnalysis = analyze_exploration_target(ExplorationTarget, Context, State),
    
    % Select appropriate exploration strategy
    ExplorationStrategy = select_strategy_for_target(ExplorationTarget, TargetAnalysis, State),
    
    % Create exploration plan
    ExplorationPlan = create_exploration_plan(ExplorationTarget, ExplorationStrategy, Context, State),
    
    % Begin exploration execution
    ExplorationId = begin_exploration_execution(ExplorationPlan, State),
    
    % Update active explorations
    NewActiveExplorations = maps:put(ExplorationId, ExplorationPlan, State#exploration_state.active_explorations),
    
    NewState = State#exploration_state{active_explorations = NewActiveExplorations},
    
    {reply, {ok, ExplorationId, ExplorationPlan}, NewState};

handle_call({execute_exploration_strategy, Strategy, Target}, _From, State) ->
    io:format("[EXPLORATION] Executing exploration strategy: ~p for target: ~p~n", [Strategy, Target]),
    
    % Execute the specified strategy
    ExecutionResult = execute_strategy_implementation(Strategy, Target, State),
    
    % Process execution results
    ProcessedResults = process_exploration_results(ExecutionResult, Strategy, Target, State),
    
    % Update exploration performance metrics
    UpdatedPerformance = update_exploration_performance(Strategy, ProcessedResults, 
                                                       State#exploration_state.exploration_performance),
    
    NewState = State#exploration_state{exploration_performance = UpdatedPerformance},
    
    {reply, {ok, ProcessedResults}, NewState};

handle_call({curiosity_driven_exploration, CuriosityTrigger}, _From, State) ->
    io:format("[EXPLORATION] Curiosity-driven exploration triggered by: ~p~n", [CuriosityTrigger]),
    
    % Analyze curiosity trigger
    CuriosityAnalysis = analyze_curiosity_trigger(CuriosityTrigger, State),
    
    % Generate curiosity-driven exploration targets
    CuriosityTargets = generate_curiosity_targets(CuriosityAnalysis, State),
    
    % Prioritize curiosity targets
    PrioritizedTargets = prioritize_curiosity_targets(CuriosityTargets, State),
    
    % Initiate exploration of highest priority target
    SelectedTarget = select_highest_priority_target(PrioritizedTargets),
    ExplorationResult = initiate_curiosity_exploration(SelectedTarget, CuriosityAnalysis, State),
    
    % Update curiosity state
    NewCuriosityState = update_curiosity_state_from_exploration(CuriosityTrigger, 
                                                               ExplorationResult, 
                                                               State#exploration_state.curiosity_state),
    
    NewState = State#exploration_state{curiosity_state = NewCuriosityState},
    
    {reply, {ok, ExplorationResult}, NewState};

handle_call({investigate_anomaly, Anomaly, InvestigationScope}, _From, State) ->
    io:format("[EXPLORATION] Investigating anomaly: ~p~n", [Anomaly]),
    
    % Analyze the anomaly
    AnomalyAnalysis = analyze_anomaly_characteristics(Anomaly, InvestigationScope, State),
    
    % Design investigation strategy
    InvestigationStrategy = design_anomaly_investigation(AnomalyAnalysis, State),
    
    % Execute investigation
    InvestigationResults = execute_anomaly_investigation(InvestigationStrategy, Anomaly, State),
    
    % Process investigation findings
    ProcessedFindings = process_investigation_findings(InvestigationResults, State),
    
    % Generate follow-up investigations if needed
    FollowUpInvestigations = generate_followup_investigations(ProcessedFindings, State),
    
    Result = #{
        anomaly_analysis => AnomalyAnalysis,
        investigation_results => InvestigationResults,
        processed_findings => ProcessedFindings,
        follow_up_investigations => FollowUpInvestigations
    },
    
    {reply, {ok, Result}, State};

handle_call({discover_environmental_patterns, SearchCriteria}, _From, State) ->
    io:format("[EXPLORATION] Discovering environmental patterns with criteria: ~p~n", [SearchCriteria]),
    
    % Collect relevant exploration data
    ExplorationData = collect_exploration_data_for_pattern_discovery(SearchCriteria, State),
    
    % Apply pattern discovery algorithms
    DiscoveredPatterns = apply_pattern_discovery_algorithms(ExplorationData, SearchCriteria, State),
    
    % Validate discovered patterns
    ValidatedPatterns = validate_discovered_patterns(DiscoveredPatterns, State),
    
    % Assess pattern significance
    PatternSignificance = assess_pattern_significance(ValidatedPatterns, State),
    
    % Generate pattern-based hypotheses
    PatternHypotheses = generate_pattern_hypotheses_from_patterns(ValidatedPatterns, State),
    
    Result = #{
        discovered_patterns => ValidatedPatterns,
        pattern_significance => PatternSignificance,
        generated_hypotheses => PatternHypotheses
    },
    
    {reply, {ok, Result}, State};

handle_call({hypothesis_driven_exploration, Hypothesis, TestingStrategy}, _From, State) ->
    io:format("[EXPLORATION] Hypothesis-driven exploration: ~p~n", [Hypothesis]),
    
    % Analyze hypothesis for exploration requirements
    HypothesisAnalysis = analyze_hypothesis_for_exploration(Hypothesis, TestingStrategy, State),
    
    % Design hypothesis testing exploration
    TestingExploration = design_hypothesis_testing_exploration(HypothesisAnalysis, State),
    
    % Execute hypothesis testing
    TestingResults = execute_hypothesis_testing(TestingExploration, Hypothesis, State),
    
    % Analyze testing results
    ResultAnalysis = analyze_hypothesis_testing_results(TestingResults, Hypothesis, State),
    
    % Update hypothesis tracking
    HypothesisId = maps:get(hypothesis_id, Hypothesis, generate_hypothesis_id()),
    UpdatedHypothesisTracking = update_hypothesis_tracking(HypothesisId, ResultAnalysis, 
                                                          State#exploration_state.hypothesis_tracking),
    
    NewState = State#exploration_state{hypothesis_tracking = UpdatedHypothesisTracking},
    
    {reply, {ok, ResultAnalysis}, NewState};

handle_call({detect_environmental_novelty, EnvironmentalInput}, _From, State) ->
    io:format("[EXPLORATION] Detecting environmental novelty~n"),
    
    % Apply novelty detection algorithms
    NoveltyDetectionResult = apply_novelty_detection(EnvironmentalInput, State#exploration_state.novelty_detector),
    
    % Update novelty detector state
    UpdatedNoveltyDetector = update_novelty_detector(EnvironmentalInput, NoveltyDetectionResult, 
                                                    State#exploration_state.novelty_detector),
    
    % Process detected novelty
    ProcessedNovelty = process_detected_novelty(NoveltyDetectionResult, EnvironmentalInput, State),
    
    % Generate exploration targets from novelty
    NoveltyTargets = generate_targets_from_novelty(ProcessedNovelty, State),
    
    NewState = State#exploration_state{novelty_detector = UpdatedNoveltyDetector},
    
    Result = #{
        novelty_detected => NoveltyDetectionResult,
        processed_novelty => ProcessedNovelty,
        exploration_targets => NoveltyTargets
    },
    
    {reply, {ok, Result}, NewState};

handle_call({explore_conceptual_space, ConceptualContext}, _From, State) ->
    io:format("[EXPLORATION] Exploring conceptual space: ~p~n", [ConceptualContext]),
    
    % Map conceptual space for exploration
    ConceptualMap = map_conceptual_space(ConceptualContext, State),
    
    % Identify interesting regions in conceptual space
    InterestingRegions = identify_interesting_conceptual_regions(ConceptualMap, State),
    
    % Select regions for exploration
    SelectedRegions = select_conceptual_regions_for_exploration(InterestingRegions, State),
    
    % Explore selected conceptual regions
    ExplorationResults = explore_conceptual_regions(SelectedRegions, ConceptualContext, State),
    
    % Process conceptual discoveries
    ConceptualDiscoveries = process_conceptual_exploration_results(ExplorationResults, State),
    
    Result = #{
        conceptual_map => ConceptualMap,
        explored_regions => SelectedRegions,
        exploration_results => ExplorationResults,
        conceptual_discoveries => ConceptualDiscoveries
    },
    
    {reply, {ok, Result}, State};

handle_call({design_exploration_experiments, ExperimentObjective, Constraints}, _From, State) ->
    io:format("[EXPLORATION] Designing exploration experiments for objective: ~p~n", [ExperimentObjective]),
    
    % Analyze experiment objective
    ObjectiveAnalysis = analyze_experiment_objective(ExperimentObjective, Constraints, State),
    
    % Generate experiment design alternatives
    ExperimentDesigns = generate_experiment_designs(ObjectiveAnalysis, State),
    
    % Evaluate experiment designs
    EvaluatedDesigns = evaluate_experiment_designs(ExperimentDesigns, Constraints, State),
    
    % Select optimal experiment design
    OptimalDesign = select_optimal_experiment_design(EvaluatedDesigns, State),
    
    % Refine experiment design
    RefinedDesign = refine_experiment_design(OptimalDesign, State),
    
    {reply, {ok, RefinedDesign}, State};

handle_call({balance_exploration_exploitation, BalancingContext}, _From, State) ->
    io:format("[EXPLORATION] Balancing exploration vs exploitation~n"),
    
    % Analyze current exploration-exploitation balance
    CurrentBalance = analyze_current_exploration_exploitation_balance(State),
    
    % Determine optimal balance for context
    OptimalBalance = determine_optimal_balance(BalancingContext, State),
    
    % Calculate balance adjustment
    BalanceAdjustment = calculate_balance_adjustment(CurrentBalance, OptimalBalance),
    
    % Apply balance adjustment
    AdjustedState = apply_exploration_exploitation_adjustment(BalanceAdjustment, State),
    
    Result = #{
        current_balance => CurrentBalance,
        optimal_balance => OptimalBalance,
        adjustment => BalanceAdjustment
    },
    
    {reply, {ok, Result}, AdjustedState};

handle_call(_Request, _From, State) ->
    {reply, {error, unknown_request}, State}.

handle_cast({process_surprising_observations, Observation, ExpectedOutcome}, State) ->
    io:format("[EXPLORATION] Processing surprising observation~n"),
    
    % Calculate surprise magnitude
    SurpriseMagnitude = calculate_surprise_magnitude(Observation, ExpectedOutcome),
    
    % Create surprise record
    SurpriseRecord = create_surprise_record(Observation, ExpectedOutcome, SurpriseMagnitude),
    
    % Add to surprise accumulator
    UpdatedSurpriseAccumulator = [SurpriseRecord | State#exploration_state.surprise_accumulator],
    
    % Update curiosity state based on surprise
    UpdatedCuriosityState = update_curiosity_from_surprise(SurpriseRecord, 
                                                          State#exploration_state.curiosity_state),
    
    % Generate surprise-driven exploration targets
    _SurpriseTargets = generate_surprise_driven_targets(SurpriseRecord, State),
    
    NewState = State#exploration_state{
        surprise_accumulator = UpdatedSurpriseAccumulator,
        curiosity_state = UpdatedCuriosityState
    },
    
    {noreply, NewState};

handle_cast(_Msg, State) ->
    {noreply, State}.

handle_info(exploration_cycle, State) ->
    % Periodic exploration cycle
    NewState = perform_exploration_cycle(State),
    schedule_exploration_cycle(),
    {noreply, NewState};

handle_info(curiosity_cycle, State) ->
    % Periodic curiosity processing cycle
    NewState = perform_curiosity_cycle(State),
    schedule_curiosity_cycle(),
    {noreply, NewState};

handle_info(discovery_analysis_cycle, State) ->
    % Periodic discovery analysis cycle
    NewState = perform_discovery_analysis_cycle(State),
    schedule_discovery_analysis_cycle(),
    {noreply, NewState};

handle_info(_Info, State) ->
    {noreply, State}.

terminate(_Reason, State) ->
    io:format("[EXPLORATION] Active exploration engine for agent ~p terminating~n", 
              [State#exploration_state.agent_id]),
    save_exploration_state(State),
    ok.

code_change(_OldVsn, State, _Extra) ->
    {ok, State}.

%%====================================================================
%% Internal functions - Exploration Strategy Implementation
%%====================================================================

analyze_exploration_target(Target, Context, State) ->
    % Analyze exploration target to determine exploration approach
    
    % Assess target novelty
    NoveltyScore = assess_target_novelty(Target, State),
    
    % Assess target accessibility
    AccessibilityScore = assess_target_accessibility(Target, Context, State),
    
    % Assess potential insights
    InsightPotential = assess_insight_potential(Target, State),
    
    % Assess resource requirements
    ResourceRequirements = assess_target_resource_requirements(Target, State),
    
    % Assess risks
    RiskAssessment = assess_exploration_risks(Target, Context, State),
    
    #{
        novelty_score => NoveltyScore,
        accessibility_score => AccessibilityScore,
        insight_potential => InsightPotential,
        resource_requirements => ResourceRequirements,
        risk_assessment => RiskAssessment,
        overall_attractiveness => calculate_target_attractiveness(NoveltyScore, AccessibilityScore, InsightPotential)
    }.

select_strategy_for_target(Target, TargetAnalysis, State) ->
    % Select the most appropriate exploration strategy for the target
    
    AvailableStrategies = State#exploration_state.exploration_strategies,
    
    % Score strategies for this target
    StrategyScores = score_strategies_for_target(Target, TargetAnalysis, AvailableStrategies),
    
    % Select best strategy
    BestStrategy = select_best_exploration_strategy(StrategyScores),
    
    BestStrategy.

create_exploration_plan(Target, Strategy, Context, State) ->
    % Create detailed exploration plan
    
    % Generate exploration steps
    ExplorationSteps = generate_exploration_steps(Target, Strategy, Context, State),
    
    % Estimate resource requirements
    ResourceEstimate = estimate_exploration_resources(ExplorationSteps, State),
    
    % Estimate time requirements
    TimeEstimate = estimate_exploration_time(ExplorationSteps, State),
    
    % Identify potential obstacles
    PotentialObstacles = identify_exploration_obstacles(ExplorationSteps, State),
    
    % Create contingency plans
    ContingencyPlans = create_exploration_contingencies(PotentialObstacles, State),
    
    #{
        target => Target,
        strategy => Strategy,
        exploration_steps => ExplorationSteps,
        resource_estimate => ResourceEstimate,
        time_estimate => TimeEstimate,
        potential_obstacles => PotentialObstacles,
        contingency_plans => ContingencyPlans,
        plan_id => generate_exploration_plan_id()
    }.

execute_strategy_implementation(Strategy, Target, State) ->
    % Execute the specific implementation of an exploration strategy
    
    case Strategy#exploration_strategy.strategy_type of
        systematic_exploration -> execute_systematic_exploration(Strategy, Target, State);
        random_exploration -> execute_random_exploration(Strategy, Target, State);
        hypothesis_driven -> execute_hypothesis_driven_exploration(Strategy, Target, State);
        curiosity_driven -> execute_curiosity_driven_exploration(Strategy, Target, State);
        adaptive_exploration -> execute_adaptive_exploration(Strategy, Target, State);
        multi_modal_exploration -> execute_multi_modal_exploration(Strategy, Target, State);
        _ -> execute_general_exploration(Strategy, Target, State)
    end.

%%====================================================================
%% Internal functions - Novelty Detection and Curiosity
%%====================================================================

apply_novelty_detection(Input, NoveltyDetector) ->
    % Apply novelty detection algorithms to input
    
    % Statistical novelty detection
    StatisticalNovelty = detect_statistical_novelty(Input, NoveltyDetector),
    
    % Semantic novelty detection
    SemanticNovelty = detect_semantic_novelty(Input, NoveltyDetector),
    
    % Structural novelty detection
    StructuralNovelty = detect_structural_novelty(Input, NoveltyDetector),
    
    % Contextual novelty detection
    ContextualNovelty = detect_contextual_novelty(Input, NoveltyDetector),
    
    % Combine novelty scores
    OverallNovelty = combine_novelty_scores(StatisticalNovelty, SemanticNovelty, 
                                           StructuralNovelty, ContextualNovelty),
    
    #{
        statistical_novelty => StatisticalNovelty,
        semantic_novelty => SemanticNovelty,
        structural_novelty => StructuralNovelty,
        contextual_novelty => ContextualNovelty,
        overall_novelty => OverallNovelty,
        novelty_threshold_exceeded => OverallNovelty > 0.7
    }.

analyze_curiosity_trigger(Trigger, State) ->
    % Analyze what triggered curiosity and why
    
    % Identify trigger type
    TriggerType = classify_curiosity_trigger(Trigger),
    
    % Assess trigger intensity
    TriggerIntensity = assess_trigger_intensity(Trigger, State),
    
    % Identify related areas of interest
    RelatedInterests = identify_related_interests(Trigger, State#exploration_state.curiosity_state),
    
    % Assess exploration potential
    ExplorationPotential = assess_curiosity_exploration_potential(Trigger, State),
    
    #{
        trigger_type => TriggerType,
        trigger_intensity => TriggerIntensity,
        related_interests => RelatedInterests,
        exploration_potential => ExplorationPotential,
        analysis_timestamp => erlang:system_time(second)
    }.

generate_curiosity_targets(CuriosityAnalysis, State) ->
    % Generate specific targets for curiosity-driven exploration
    
    TriggerType = maps:get(trigger_type, CuriosityAnalysis),
    
    % Generate targets based on trigger type
    Targets = case TriggerType of
        novelty_trigger -> generate_novelty_exploration_targets(CuriosityAnalysis, State);
        surprise_trigger -> generate_surprise_exploration_targets(CuriosityAnalysis, State);
        gap_trigger -> generate_gap_exploration_targets(CuriosityAnalysis, State);
        inconsistency_trigger -> generate_inconsistency_exploration_targets(CuriosityAnalysis, State);
        _ -> generate_general_curiosity_targets(CuriosityAnalysis, State)
    end,
    
    Targets.

%%====================================================================
%% Internal functions - Pattern Discovery and Analysis
%%====================================================================

apply_pattern_discovery_algorithms(ExplorationData, SearchCriteria, State) ->
    % Apply various pattern discovery algorithms to exploration data
    
    % Temporal pattern discovery
    TemporalPatterns = discover_temporal_exploration_patterns(ExplorationData, State),
    
    % Spatial pattern discovery
    SpatialPatterns = discover_spatial_exploration_patterns(ExplorationData, State),
    
    % Causal pattern discovery
    CausalPatterns = discover_causal_exploration_patterns(ExplorationData, State),
    
    % Association pattern discovery
    AssociationPatterns = discover_association_patterns(ExplorationData, State),
    
    % Anomaly pattern discovery
    AnomalyPatterns = discover_anomaly_patterns(ExplorationData, State),
    
    AllPatterns = #{
        temporal => TemporalPatterns,
        spatial => SpatialPatterns,
        causal => CausalPatterns,
        association => AssociationPatterns,
        anomaly => AnomalyPatterns
    },
    
    % Filter patterns based on search criteria
    FilteredPatterns = filter_patterns_by_criteria(AllPatterns, SearchCriteria),
    
    FilteredPatterns.

validate_discovered_patterns(Patterns, State) ->
    % Validate discovered patterns using various validation methods
    
    % Statistical validation
    StatisticalValidation = validate_patterns_statistically(Patterns, State),
    
    % Cross-validation
    CrossValidation = cross_validate_patterns(Patterns, State),
    
    % Consistency validation
    ConsistencyValidation = validate_pattern_consistency(Patterns, State),
    
    % Combine validation results
    ValidatedPatterns = combine_pattern_validations(Patterns, StatisticalValidation, 
                                                   CrossValidation, ConsistencyValidation),
    
    ValidatedPatterns.

assess_pattern_significance(Patterns, State) ->
    % Assess the significance of discovered patterns
    
    lists:map(fun(Pattern) ->
        % Assess novelty significance
        NoveltySignificance = assess_pattern_novelty_significance(Pattern, State),
        
        % Assess practical significance
        PracticalSignificance = assess_pattern_practical_significance(Pattern, State),
        
        % Assess theoretical significance
        TheoreticalSignificance = assess_pattern_theoretical_significance(Pattern, State),
        
        % Combine significance scores
        OverallSignificance = combine_significance_scores(NoveltySignificance, 
                                                         PracticalSignificance, 
                                                         TheoreticalSignificance),
        
        maps:put(significance_score, OverallSignificance, Pattern)
    end, Patterns).

%%====================================================================
%% Internal functions - Hypothesis Testing and Experimentation
%%====================================================================

design_hypothesis_testing_exploration(HypothesisAnalysis, State) ->
    % Design exploration specifically to test a hypothesis
    
    % Identify testable predictions
    TestablePredictions = identify_testable_predictions(HypothesisAnalysis),
    
    % Design tests for each prediction
    TestDesigns = design_prediction_tests(TestablePredictions, State),
    
    % Optimize test design
    OptimizedTestDesign = optimize_hypothesis_test_design(TestDesigns, State),
    
    % Create execution plan
    ExecutionPlan = create_hypothesis_test_execution_plan(OptimizedTestDesign, State),
    
    #{
        hypothesis_analysis => HypothesisAnalysis,
        testable_predictions => TestablePredictions,
        test_designs => TestDesigns,
        optimized_design => OptimizedTestDesign,
        execution_plan => ExecutionPlan
    }.

execute_hypothesis_testing(TestingExploration, Hypothesis, State) ->
    % Execute hypothesis testing exploration
    
    ExecutionPlan = maps:get(execution_plan, TestingExploration),
    
    % Execute each test in the plan
    TestResults = execute_hypothesis_tests(ExecutionPlan, State),
    
    % Collect additional observational data
    ObservationalData = collect_hypothesis_observational_data(Hypothesis, State),
    
    % Combine test results and observational data
    CombinedResults = combine_hypothesis_test_data(TestResults, ObservationalData),
    
    CombinedResults.

analyze_hypothesis_testing_results(TestingResults, Hypothesis, State) ->
    % Analyze results of hypothesis testing
    
    % Statistical analysis of results
    StatisticalAnalysis = perform_statistical_analysis_of_results(TestingResults),
    
    % Assess hypothesis support
    HypothesisSupport = assess_hypothesis_support(TestingResults, Hypothesis, StatisticalAnalysis),
    
    % Identify alternative explanations
    AlternativeExplanations = identify_alternative_explanations(TestingResults, State),
    
    % Generate follow-up hypotheses
    FollowUpHypotheses = generate_followup_hypotheses(TestingResults, Hypothesis, State),
    
    % Calculate confidence in conclusions
    ConclusionConfidence = calculate_hypothesis_conclusion_confidence(HypothesisSupport, 
                                                                     AlternativeExplanations),
    
    #{
        statistical_analysis => StatisticalAnalysis,
        hypothesis_support => HypothesisSupport,
        alternative_explanations => AlternativeExplanations,
        follow_up_hypotheses => FollowUpHypotheses,
        conclusion_confidence => ConclusionConfidence,
        overall_assessment => assess_overall_hypothesis_outcome(HypothesisSupport, ConclusionConfidence)
    }.

%%====================================================================
%% Internal functions - Exploration Cycles and Coordination
%%====================================================================

schedule_exploration_cycle() ->
    Interval = 45000, % 45 seconds
    erlang:send_after(Interval, self(), exploration_cycle).

schedule_curiosity_cycle() ->
    Interval = 30000, % 30 seconds
    erlang:send_after(Interval, self(), curiosity_cycle).

schedule_discovery_analysis_cycle() ->
    Interval = 120000, % 2 minutes
    erlang:send_after(Interval, self(), discovery_analysis_cycle).

perform_exploration_cycle(State) ->
    % Perform periodic exploration cycle
    
    % Evaluate ongoing explorations
    EvaluatedExplorations = evaluate_ongoing_explorations(State),
    
    % Identify new exploration opportunities
    NewOpportunities = identify_new_exploration_opportunities(State),
    
    % Select new explorations to initiate
    SelectedExplorations = select_new_explorations(NewOpportunities, State),
    
    % Update exploration targets
    UpdatedTargets = update_exploration_targets(EvaluatedExplorations, SelectedExplorations, 
                                               State#exploration_state.exploration_targets),
    
    % Update exploration history
    UpdatedHistory = update_exploration_history(EvaluatedExplorations, 
                                               State#exploration_state.exploration_history),
    
    State#exploration_state{
        exploration_targets = UpdatedTargets,
        exploration_history = UpdatedHistory
    }.

perform_curiosity_cycle(State) ->
    % Perform periodic curiosity processing
    
    % Update curiosity level based on recent experiences
    UpdatedCuriosity = update_curiosity_level(State#exploration_state.curiosity_state, State),
    
    % Process accumulated surprises
    ProcessedSurprises = process_accumulated_surprises(State#exploration_state.surprise_accumulator),
    
    % Generate new areas of interest
    NewInterestAreas = generate_new_interest_areas(UpdatedCuriosity, ProcessedSurprises, State),
    
    % Update areas of interest
    UpdatedInterestAreas = update_areas_of_interest(NewInterestAreas, 
                                                   UpdatedCuriosity#curiosity_state.areas_of_interest),
    
    FinalCuriosityState = UpdatedCuriosity#curiosity_state{areas_of_interest = UpdatedInterestAreas},
    
    State#exploration_state{curiosity_state = FinalCuriosityState}.

perform_discovery_analysis_cycle(State) ->
    % Perform periodic analysis of discoveries
    
    RecentDiscoveries = get_recent_discoveries(State, 20),
    
    if length(RecentDiscoveries) > 0 ->
        % Analyze discovery patterns
        DiscoveryPatterns = analyze_discovery_patterns(RecentDiscoveries, State),
        
        % Identify discovery trends
        DiscoveryTrends = identify_discovery_trends(RecentDiscoveries, State),
        
        % Update exploration preferences based on discoveries
        UpdatedPreferences = update_exploration_preferences_from_discoveries(DiscoveryPatterns, 
                                                                           DiscoveryTrends,
                                                                           State#exploration_state.exploration_preferences),
        
        State#exploration_state{exploration_preferences = UpdatedPreferences};
    true ->
        State
    end.

%%====================================================================
%% Internal functions - Utility and Helper Functions
%%====================================================================

initialize_exploration_strategies(_Config) ->
    [
        create_strategy(systematic_exploration, "Systematic exploration of environment"),
        create_strategy(random_exploration, "Random exploration with curiosity guidance"),
        create_strategy(hypothesis_driven, "Hypothesis-driven exploration"),
        create_strategy(curiosity_driven, "Curiosity-driven exploration"),
        create_strategy(adaptive_exploration, "Adaptive exploration based on outcomes"),
        create_strategy(multi_modal_exploration, "Multi-modal exploration across dimensions")
    ].

create_strategy(Type, Description) ->
    #exploration_strategy{
        strategy_id = generate_strategy_id(),
        strategy_type = Type,
        strategy_name = Description,
        strategy_parameters = initialize_strategy_parameters(Type)
    }.

initialize_strategy_parameters(Type) ->
    case Type of
        systematic_exploration -> #{thoroughness => 0.8, coverage => 0.9};
        random_exploration -> #{randomness => 0.7, curiosity_bias => 0.6};
        hypothesis_driven -> #{rigor => 0.9, prediction_focus => 0.8};
        curiosity_driven -> #{novelty_seeking => 0.8, surprise_sensitivity => 0.7};
        adaptive_exploration -> #{adaptation_rate => 0.6, learning_rate => 0.5};
        multi_modal_exploration -> #{dimension_coverage => 0.7, integration_depth => 0.6};
        _ -> #{general_effectiveness => 0.5}
    end.

initialize_curiosity_state(_Config) ->
    #curiosity_state{
        current_curiosity_level = 0.6,
        novelty_seeking_tendency = 0.7,
        exploration_motivation = 0.5,
        curiosity_satisfaction_level = 0.4
    }.

initialize_novelty_detector(_Config) ->
    #{
        statistical_baseline => #{},
        semantic_memory => [],
        structural_patterns => [],
        contextual_history => [],
        detection_threshold => 0.6,
        adaptation_rate => 0.1
    }.

generate_exploration_id() ->
    iolist_to_binary(io_lib:format("exploration_~p", [erlang:system_time(microsecond)])).

generate_strategy_id() ->
    iolist_to_binary(io_lib:format("strategy_~p", [erlang:system_time(microsecond)])).

generate_exploration_plan_id() ->
    iolist_to_binary(io_lib:format("plan_~p", [erlang:system_time(microsecond)])).

generate_hypothesis_id() ->
    iolist_to_binary(io_lib:format("hypothesis_~p", [erlang:system_time(microsecond)])).

save_exploration_state(_State) ->
    % Save exploration state to persistent storage
    ok.

% Placeholder implementations for complex functions (would be fully implemented in production)
assess_target_novelty(_Target, _State) -> 0.7.
assess_target_accessibility(_Target, _Context, _State) -> 0.8.
assess_insight_potential(_Target, _State) -> 0.6.
assess_target_resource_requirements(_Target, _State) -> #{}.
assess_exploration_risks(_Target, _Context, _State) -> #{}.
calculate_target_attractiveness(Novelty, Accessibility, Insight) -> (Novelty + Accessibility + Insight) / 3.

score_strategies_for_target(_Target, _Analysis, Strategies) -> [{S, 0.5} || S <- Strategies].
select_best_exploration_strategy(Scores) -> element(1, hd(Scores)).

generate_exploration_steps(_Target, _Strategy, _Context, _State) -> [].
estimate_exploration_resources(_Steps, _State) -> #{}.
estimate_exploration_time(_Steps, _State) -> 60.
identify_exploration_obstacles(_Steps, _State) -> [].
create_exploration_contingencies(_Obstacles, _State) -> [].
begin_exploration_execution(_Plan, _State) -> generate_exploration_id().

execute_systematic_exploration(_Strategy, _Target, _State) -> #{type => systematic}.
execute_random_exploration(_Strategy, _Target, _State) -> #{type => random}.
execute_hypothesis_driven_exploration(_Strategy, _Target, _State) -> #{type => hypothesis_driven}.
execute_curiosity_driven_exploration(_Strategy, _Target, _State) -> #{type => curiosity_driven}.
execute_adaptive_exploration(_Strategy, _Target, _State) -> #{type => adaptive}.
execute_multi_modal_exploration(_Strategy, _Target, _State) -> #{type => multi_modal}.
execute_general_exploration(_Strategy, _Target, _State) -> #{type => general}.

process_exploration_results(_Result, _Strategy, _Target, _State) -> #{}.
update_exploration_performance(_Strategy, _Results, Performance) -> Performance.

detect_statistical_novelty(_Input, _Detector) -> 0.5.
detect_semantic_novelty(_Input, _Detector) -> 0.4.
detect_structural_novelty(_Input, _Detector) -> 0.6.
detect_contextual_novelty(_Input, _Detector) -> 0.3.
combine_novelty_scores(Stat, Sem, Struct, Cont) -> (Stat + Sem + Struct + Cont) / 4.
update_novelty_detector(_Input, _Result, Detector) -> Detector.
process_detected_novelty(_Result, _Input, _State) -> #{}.
generate_targets_from_novelty(_Novelty, _State) -> [].

classify_curiosity_trigger(_Trigger) -> novelty_trigger.
assess_trigger_intensity(_Trigger, _State) -> 0.7.
identify_related_interests(_Trigger, _CuriosityState) -> [].
assess_curiosity_exploration_potential(_Trigger, _State) -> 0.6.

generate_novelty_exploration_targets(_Analysis, _State) -> [].
generate_surprise_exploration_targets(_Analysis, _State) -> [].
generate_gap_exploration_targets(_Analysis, _State) -> [].
generate_inconsistency_exploration_targets(_Analysis, _State) -> [].
generate_general_curiosity_targets(_Analysis, _State) -> [].

prioritize_curiosity_targets(Targets, _State) -> Targets.
select_highest_priority_target(Targets) -> hd(Targets ++ [undefined]).
initiate_curiosity_exploration(_Target, _Analysis, _State) -> #{}.
update_curiosity_state_from_exploration(_Trigger, _Result, CuriosityState) -> CuriosityState.

calculate_surprise_magnitude(_Observation, _Expected) -> 0.6.
create_surprise_record(Observation, Expected, Magnitude) -> #{observation => Observation, expected => Expected, magnitude => Magnitude}.
update_curiosity_from_surprise(_Record, CuriosityState) -> CuriosityState.
generate_surprise_driven_targets(_Record, _State) -> [].

analyze_anomaly_characteristics(_Anomaly, _Scope, _State) -> #{}.
design_anomaly_investigation(_Analysis, _State) -> #{}.
execute_anomaly_investigation(_Strategy, _Anomaly, _State) -> #{}.
process_investigation_findings(_Results, _State) -> #{}.
generate_followup_investigations(_Findings, _State) -> [].

collect_exploration_data_for_pattern_discovery(_Criteria, _State) -> [].
discover_temporal_exploration_patterns(_Data, _State) -> [].
discover_spatial_exploration_patterns(_Data, _State) -> [].
discover_causal_exploration_patterns(_Data, _State) -> [].
discover_association_patterns(_Data, _State) -> [].
discover_anomaly_patterns(_Data, _State) -> [].
filter_patterns_by_criteria(Patterns, _Criteria) -> Patterns.

validate_patterns_statistically(_Patterns, _State) -> #{}.
cross_validate_patterns(_Patterns, _State) -> #{}.
validate_pattern_consistency(_Patterns, _State) -> #{}.
combine_pattern_validations(Patterns, _Stat, _Cross, _Consistency) -> Patterns.

assess_pattern_novelty_significance(_Pattern, _State) -> 0.6.
assess_pattern_practical_significance(_Pattern, _State) -> 0.5.
assess_pattern_theoretical_significance(_Pattern, _State) -> 0.7.
combine_significance_scores(Nov, Prac, Theo) -> (Nov + Prac + Theo) / 3.

analyze_hypothesis_for_exploration(_Hypothesis, _Strategy, _State) -> #{}.
identify_testable_predictions(_Analysis) -> [].
design_prediction_tests(_Predictions, _State) -> [].
optimize_hypothesis_test_design(_Designs, _State) -> #{}.
create_hypothesis_test_execution_plan(_Design, _State) -> [].

execute_hypothesis_tests(_Plan, _State) -> [].
collect_hypothesis_observational_data(_Hypothesis, _State) -> [].
combine_hypothesis_test_data(_Tests, _Observational) -> #{}.

perform_statistical_analysis_of_results(_Results) -> #{}.
assess_hypothesis_support(_Results, _Hypothesis, _Analysis) -> #{}.
identify_alternative_explanations(_Results, _State) -> [].
generate_followup_hypotheses(_Results, _Hypothesis, _State) -> [].
calculate_hypothesis_conclusion_confidence(_Support, _Alternatives) -> 0.7.
assess_overall_hypothesis_outcome(_Support, _Confidence) -> supported.
update_hypothesis_tracking(_Id, _Analysis, Tracking) -> Tracking.

map_conceptual_space(_Context, _State) -> #{}.
identify_interesting_conceptual_regions(_Map, _State) -> [].
select_conceptual_regions_for_exploration(_Regions, _State) -> [].
explore_conceptual_regions(_Regions, _Context, _State) -> #{}.
process_conceptual_exploration_results(_Results, _State) -> [].

analyze_experiment_objective(_Objective, _Constraints, _State) -> #{}.
generate_experiment_designs(_Analysis, _State) -> [].
evaluate_experiment_designs(_Designs, _Constraints, _State) -> [].
select_optimal_experiment_design(_Evaluated, _State) -> #{}.
refine_experiment_design(_Design, _State) -> #{}.

analyze_current_exploration_exploitation_balance(_State) -> #{exploration => 0.6, exploitation => 0.4}.
determine_optimal_balance(_Context, _State) -> #{exploration => 0.5, exploitation => 0.5}.
calculate_balance_adjustment(_Current, _Optimal) -> #{exploration_change => 0.1, exploitation_change => -0.1}.
apply_exploration_exploitation_adjustment(_Adjustment, State) -> State.

evaluate_ongoing_explorations(_State) -> [].
identify_new_exploration_opportunities(_State) -> [].
select_new_explorations(_Opportunities, _State) -> [].
update_exploration_targets(_Evaluated, _Selected, Targets) -> Targets.
update_exploration_history(_Evaluated, History) -> History.

update_curiosity_level(_CuriosityState, _State) -> #curiosity_state{}.
process_accumulated_surprises(_Accumulator) -> [].
generate_new_interest_areas(_Curiosity, _Surprises, _State) -> [].
update_areas_of_interest(_New, _Current) -> [].

get_recent_discoveries(_State, _Count) -> [].
analyze_discovery_patterns(_Discoveries, _State) -> #{}.
identify_discovery_trends(_Discoveries, _State) -> #{}.
update_exploration_preferences_from_discoveries(_Patterns, _Trends, Preferences) -> Preferences.
generate_pattern_hypotheses_from_patterns(_Patterns, _State) -> [].