defmodule Chi2fit.Distribution.BiModal do
# Copyright 2020 Pieter Rijken
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
@moduledoc """
Bimodal distribution.
"""
defstruct [:weights,:distribs,name: "bimodal"]
@type t() :: %__MODULE__{
weights: [number()] | nil,
distribs: [Distribution.t()] | nil,
name: String.t
}
end
defimpl Chi2fit.Distribution, for: Chi2fit.Distribution.BiModal do
alias Chi2fit.Distribution, as: D
import D.BiModal
alias D.BiModal
def skewness(%BiModal{distribs: nil}), do: raise ArithmeticError, "Skewness not supported for BiModal distribution"
def kurtosis(%BiModal{distribs: nil}), do: raise ArithmeticError, "Kurtosis not supported for BiModal distribution"
def size(%BiModal{distribs: distribs}), do: 1 + (distribs|>Enum.map(&D.size(&1))|>Enum.sum)
def cdf(%BiModal{weights: nil, distribs: distribs}) do
fn x,[w|parameters] ->
distribs
|> Enum.map(&{&1,D.size(&1)})
|> Enum.reduce({[],parameters},fn {d,size},{result,rest} -> {[{d,Enum.take(rest,size)}|result],Enum.drop(rest,size)} end)
|> elem(0)
|> Enum.reverse()
|> Enum.zip([w,1-w])
|> Enum.map(fn {tup,p} -> Tuple.append(tup,p) end)
|> Enum.map(fn {d,pars,p} -> p*D.cdf(d).(x,pars) end)
|> Enum.sum
end
end
def pdf(%BiModal{weights: nil, distribs: distribs}) do
fn x,[w|parameters] ->
distribs
|> Enum.map(&{&1,D.size(&1)})
|> Enum.reduce({[],parameters},fn {d,size},{result,rest} -> {[{d,Enum.take(rest,size)}|result],Enum.drop(rest,size)} end)
|> elem(0)
|> Enum.reverse()
|> Enum.zip([w,1-w])
|> Enum.map(fn {tup,p} -> Tuple.append(tup,p) end)
|> Enum.map(fn {d,pars,p} -> p*D.pdf(d).(x,pars) end)
|> Enum.sum
end
end
def random(%BiModal{weights: nil, distribs: distribs}) do
fn [w|parameters] ->
rnd = :rand.uniform()
distribs
|> Enum.map(&{&1,D.size(&1)})
|> Enum.reduce({[],parameters},fn {d,size},{result,rest} -> {[{d,Enum.take(rest,size)}|result],Enum.drop(rest,size)} end)
|> elem(0)
|> Enum.reverse()
|> Enum.zip([w,1])
|> Enum.map(fn {tup,p} -> Tuple.append(tup,p) end)
|> Enum.map(fn {d,pars,p} -> {D.random(d).(pars),p} end)
|> Enum.reduce(nil, fn ({r,p},nil) -> if(rnd<p, do: r, else: nil); (_,acc) -> acc end)
end
end
def name(model), do: model.name
end
defimpl Inspect, for: Chi2fit.Distribution.BiModal do
import Inspect.Algebra
def inspect(dict, opts) do
case {dict.weights,dict.distribs} do
{_,nil} ->
"#BiModal<>"
{nil,[d1,d2]} ->
concat ["#BiModal<", to_doc([d1,d2], opts), ">"]
{[w],[d1,d2]} ->
concat ["#BiModal<", "weights=(#{w},#{1-w})", "distribs=", to_doc([d1,d2], opts), ">"]
end
end
end