defmodule Chi2fit.Distribution.TracyWidom do
# Copyright 2019 Pieter Rijken
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
@moduledoc """
Tracy-Widom distribution.
"""
defstruct [:pars, :type, name: "tracy-widom"]
@type t() :: %__MODULE__{
pars: [number()] | nil,
type: 1|2|4,
name: String.t
}
end
defimpl Chi2fit.Distribution, for: Chi2fit.Distribution.TracyWidom do
alias Chi2fit.Distribution, as: D
import D.TracyWidom
alias D.TracyWidom
import Exboost.Math, only: [tgamma: 1, tgamma_lower: 2]
# "Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy-Widom distribution", arXiv:1209.3394, Journal of Multivariate Analysis, Vol. 129, p. 69-81, 2014
# See https://arxiv.org/pdf/1209.3394.pdf, Table 1
@t1k 46.446
@t1theta 0.186054
@t1alpha 9.84801
@t2k 79.6595
@t2theta 0.101037
@t2alpha 9.81961
@t4k 146.021
@t4theta 0.0595445
@t4alpha 11.0016
@e :math.exp(1.0)
defp _gamma(k) when k > 1.0 do
delta = k - :math.floor(k)
u = :rand.uniform()
v = :rand.uniform()
w = :rand.uniform()
if u <= @e/(@e+delta) do
x = :math.pow(v, 1/delta)
if w > :math.exp(-x), do: _gamma(k), else: x
else
x = 1.0 - :math.log(v)
if w > :math.pow(x, delta-1), do: _gamma(k), else: x
end
end
defp gamma(k,1.0) when k > 1.0 do
_gamma(k) - (1..trunc(k) |> Enum.map(fn _ -> :math.log(:rand.uniform()) end) |> Enum.sum)
end
@spec tracywidom(number, number, number, number, number) :: ((...) -> number)
defp tracywidom(mu, scale, k, theta, alpha) do
fn -> mu + scale*( theta*gamma(k,1.0) - alpha ) end
end
@spec tracywidomCDF(number,number,number,number,number) :: (number -> number)
defp tracywidomCDF(mu,scale,k,theta,alpha) when is_number(mu) and is_number(scale) do
fn
x when x == mu - scale*alpha -> 0.0
x when x < mu - scale*alpha -> 0.0
x when x > mu - scale*alpha ->
1/tgamma(k)*tgamma_lower(k, (x - mu + scale*alpha)/theta/scale)
end
end
@spec tracywidomPDF(number,number,number,number,number) :: (number -> number)
defp tracywidomPDF(mu,scale,k,theta,alpha) when is_number(mu) and is_number(scale) do
fn
x when x == mu - scale*alpha -> 0.0
x when x < mu - scale*alpha -> 0.0
x when x > mu - scale*alpha ->
1/tgamma(k)*:math.pow(theta*scale,-k)*:math.pow(x - mu + scale*alpha,k-1)*:math.exp(-(x - mu + scale*alpha)/theta/scale)
end
end
defp mean(%TracyWidom{type: 1}), do: fn [mu,scale] -> (-1.2065335745820 - mu)/scale end
defp mean(%TracyWidom{type: 2}), do: fn [mu,scale] -> (-1.7710868074110 - mu)/scale end
defp mean(%TracyWidom{type: 4}), do: fn [mu,scale] -> (-2.3068848932410 - mu)/scale end
defp variantie(d=%TracyWidom{type: 1}), do: fn [mu,scale] -> (1.6077810345810 - 2*mu*scale*mean(d).([mu,scale]) - mu*mu)/scale/scale end
defp variantie(d=%TracyWidom{type: 2}), do: fn [mu,scale] -> (0.8131947928320 - 2*mu*scale*mean(d).([mu,scale]) - mu*mu)/scale/scale end
defp variantie(d=%TracyWidom{type: 4}), do: fn [mu,scale] -> (0.5177237207726 - 2*mu*scale*mean(d).([mu,scale]) - mu*mu)/scale/scale end
def skewness(d=%TracyWidom{type: 1}), do: fn [mu,scale] -> (2.0/:math.sqrt(@t1k) -3*mu*scale*scale*variantie(d).([mu,scale]) - 3*mu*mu*scale*mean(d).([mu,scale]) - mu*mu*mu)/scale/scale/scale end
def skewness(d=%TracyWidom{type: 2}), do: fn [mu,scale] -> (2.0/:math.sqrt(@t2k) -3*mu*scale*scale*variantie(d).([mu,scale]) - 3*mu*mu*scale*mean(d).([mu,scale]) - mu*mu*mu)/scale/scale/scale end
def skewness(d=%TracyWidom{type: 4}), do: fn [mu,scale] -> (2.0/:math.sqrt(@t4k) -3*mu*scale*scale*variantie(d).([mu,scale]) - 3*mu*mu*scale*mean(d).([mu,scale]) - mu*mu*mu)/scale/scale/scale end
def kurtosis(d=%TracyWidom{type: 1}), do: fn [mu,scale] -> (0.1652429384 - 4*mu*scale*scale*scale*skewness(d).([mu,scale]) - 6*mu*mu*scale*scale*variantie(d).([mu,scale]) - 4*mu*mu*mu*scale*mean(d).([mu,scale]) - mu*mu*mu*mu)/scale/scale/scale/scale end
def kurtosis(d=%TracyWidom{type: 2}), do: fn [mu,scale] -> (0.0934480876 - 4*mu*scale*scale*scale*skewness(d).([mu,scale]) - 6*mu*mu*scale*scale*variantie(d).([mu,scale]) - 4*mu*mu*mu*scale*mean(d).([mu,scale]) - mu*mu*mu*mu)/scale/scale/scale/scale end
def kurtosis(d=%TracyWidom{type: 4}), do: fn [mu,scale] -> (0.0491951565 - 4*mu*scale*scale*scale*skewness(d).([mu,scale]) - 6*mu*mu*scale*scale*variantie(d).([mu,scale]) - 4*mu*mu*mu*scale*mean(d).([mu,scale]) - mu*mu*mu*mu)/scale/scale/scale/scale end
def size(%TracyWidom{}), do: 2
def cdf(%TracyWidom{pars: nil, type: 1}), do: fn x,[mu,scale] -> tracywidomCDF(mu,scale,@t1k,@t1theta,@t1alpha).(x) end
def cdf(%TracyWidom{pars: nil, type: 2}), do: fn x,[mu,scale] -> tracywidomCDF(mu,scale,@t2k,@t2theta,@t2alpha).(x) end
def cdf(%TracyWidom{pars: nil, type: 4}), do: fn x,[mu,scale] -> tracywidomCDF(mu,scale,@t4k,@t4theta,@t4alpha).(x) end
def pdf(%TracyWidom{pars: nil, type: 1}), do: fn x,[mu,scale] -> tracywidomPDF(mu,scale,@t1k,@t1theta,@t1alpha).(x) end
def pdf(%TracyWidom{pars: nil, type: 2}), do: fn x,[mu,scale] -> tracywidomPDF(mu,scale,@t2k,@t2theta,@t2alpha).(x) end
def pdf(%TracyWidom{pars: nil, type: 4}), do: fn x,[mu,scale] -> tracywidomPDF(mu,scale,@t4k,@t4theta,@t4alpha).(x) end
def random(%TracyWidom{pars: nil, type: 1}), do: fn [mu,scale] -> tracywidom(mu,scale,@t1k,@t1theta,@t1alpha).() end
def random(%TracyWidom{pars: nil, type: 2}), do: fn [mu,scale] -> tracywidom(mu,scale,@t2k,@t2theta,@t2alpha).() end
def random(%TracyWidom{pars: nil, type: 4}), do: fn [mu,scale] -> tracywidom(mu,scale,@t4k,@t4theta,@t4alpha).() end
def name(model), do: model.name
end
defimpl Inspect, for: Chi2fit.Distribution.TracyWidom do
def inspect(dict, opts) do
import Inspect.Algebra
type = cond do
is_integer(dict.type) -> "_#{dict.type}"
true -> ""
end
case dict.pars do
nil ->
"#TracyWidom#{type}<>"
[mu,scale] ->
concat ["#TracyWidom#{type}<", to_doc("mu=#{mu}, scale=#{scale}", opts), ">"]
list ->
concat ["#TracyWidom#{type}<", to_doc(list, opts), ">"]
end
end
end