defmodule Cldr.Digits do
@moduledoc """
Abstract representation of number (integer, float, Decimal) in tuple form
and functions for transformations on number parts.
Representing a number as a list of its digits, and integer representing
where the decimal point is placed and an integer representing the sign
of the number allow more efficient transforms on the various parts of
the number as happens during the formatting of a number for string output.
"""
use Bitwise
import Cldr.Math, only: [power_of_10: 1]
require Integer
alias Cldr.Math
@typedoc """
Defines a number in a tuple form of three parts:
* A list of digits (0..9) representing the number
* A digit representing the place of the decimal points
in the number
* a `1` or `-1` representing the sign of the number
A number in integer, float or Decimal form can be converted
to digit form with `Digits.to_digits/1`.
The digits can be converted back to normal form with
`Cldr.Digits.to_integer/1`, `Cldr.Digits.to_float/1` and
`Cldr.Digits.to_decimal/1`.
"""
@type t :: {[0..9, ...], non_neg_integer, 1 | -1}
@two52 bsl(1, 52)
@two53 bsl(1, 53)
@float_bias 1022
@min_e -1074
@doc """
Returns the fractional part of an integer, float or Decimal as an integer.
* `number` can be either a float, Decimal or integer although an integer has
no fraction part and will therefore always return 0.
## Examples
iex> Cldr.Digits.fraction_as_integer(123.456)
456
iex> Cldr.Digits.fraction_as_integer(Decimal.new("123.456"))
456
iex> Cldr.Digits.fraction_as_integer(1999)
0
"""
@spec fraction_as_integer(Math.number_or_decimal() | {list, list, 1 | -1}) :: integer
def fraction_as_integer({_integer, fraction, _sign})
when is_list(fraction) do
Integer.undigits(fraction)
end
def fraction_as_integer({_integer, [], _sign}) do
0
end
def fraction_as_integer(number) do
number
|> to_tuple
|> fraction_as_integer
end
def fraction_as_integer(number, rounding) do
number = Float.round(number, rounding)
fraction_as_integer(number)
end
@doc """
Returns the number of decimal digits in a number
(integer, float, Decimal)
## Options
* `number` is an integer, float or `Decimal`
or a list (which is assumed to contain digits).
## Examples
iex> Cldr.Digits.number_of_digits(1234)
4
iex> Cldr.Digits.number_of_digits(Decimal.new("123456789"))
9
iex> Cldr.Digits.number_of_digits(1234.456)
7
iex> Cldr.Digits.number_of_digits(1234.56789098765)
15
iex> Cldr.Digits.number_of_digits '12345'
5
"""
@spec number_of_digits(
Math.number_or_decimal()
| list()
| {[integer(), ...], integer | [integer(), ...], -1 | 1}
) :: integer
def number_of_digits(%Decimal{} = number) do
number
|> to_digits
|> number_of_digits
end
def number_of_digits(number) when is_number(number) do
number
|> to_digits
|> number_of_digits
end
def number_of_digits(list) when is_list(list) do
length(list)
end
def number_of_digits({integer, place, _sign})
when is_list(integer) and is_integer(place) do
length(integer)
end
@doc """
Returns the number of decimal digits in the integer
part of a number.
## Options
* `number` is an integer, float or `Decimal` or
a list (which is assumed to contain digits).
## Examples
iex> Cldr.Digits.number_of_integer_digits(1234)
4
iex> Cldr.Digits.number_of_integer_digits(Decimal.new("123456789"))
9
iex> Cldr.Digits.number_of_integer_digits(1234.456)
4
iex> Cldr.Digits.number_of_integer_digits '12345'
5
"""
@spec number_of_integer_digits(
Math.number_or_decimal()
| list()
| {[integer(), ...], integer | [integer(), ...], -1 | 1}
) :: integer
def number_of_integer_digits(%Decimal{} = number) do
number
|> to_digits
|> number_of_integer_digits
end
def number_of_integer_digits(number) when is_number(number) do
number
|> to_digits
|> number_of_integer_digits
end
# A decomposed integer might be charlist or a list of integers
# since for certain transforms this is more efficient. Note
# that we are not checking if the list elements are actually
# digits.
def number_of_integer_digits(list) when is_list(list) do
length(list)
end
# For a tuple returned by `Digits.to_digits/1`
def number_of_integer_digits({integer, place, _sign})
when is_list(integer) and is_integer(place) and place <= 0 do
0
end
def number_of_integer_digits({integer, place, _sign})
when is_list(integer) and is_integer(place) do
place
end
# For a tuple returned by `Digits.to_tuple/1`
def number_of_integer_digits({[], _fraction, _sign}) do
0
end
def number_of_integer_digits({integer, fraction, _sign})
when is_list(integer) and is_list(fraction) do
number_of_integer_digits(integer)
end
@doc """
Remove trailing zeroes from the integer part of a number
and returns the integer part without trailing zeros.
* `number` is an integer, float or Decimal.
## Examples
iex> Cldr.Digits.remove_trailing_zeros(1234000)
1234
"""
@spec remove_trailing_zeros(Math.number_or_decimal() | [integer(), ...]) ::
integer | [integer(), ...]
def remove_trailing_zeros(0) do
0
end
def remove_trailing_zeros(number) when is_number(number) do
{integer_digits, _fraction_digits, sign} = to_tuple(number)
removed = remove_trailing_zeros(integer_digits)
to_integer({removed, length(removed), sign})
end
def remove_trailing_zeros(%Decimal{} = number) do
{integer_digits, _fraction_digits, sign} = to_tuple(number)
removed = remove_trailing_zeros(integer_digits)
to_integer({removed, length(removed), sign})
end
# Filters either a charlist or a list of integers.
def remove_trailing_zeros(number) when is_list(number) do
Enum.take_while(number, fn c ->
(c >= ?1 and c <= ?9) or c > 0
end)
end
@doc """
Returns the number of leading zeros in a
Decimal fraction.
* `number` is an integer, float or Decimal
Returns the number of leading zeros in the fractional
part of a number.
## Examples
iex> Cldr.Digits.number_of_leading_zeros(Decimal.new("0.0001"))
3
"""
@spec number_of_leading_zeros(Math.number_or_decimal() | [integer(), ...]) :: integer
def number_of_leading_zeros(%Decimal{} = number) do
{_integer_digits, fraction_digits, _sign} = to_tuple(number)
number_of_leading_zeros(fraction_digits)
end
def number_of_leading_zeros(number) when is_number(number) do
{_integer_digits, fraction_digits, _sign} = to_tuple(number)
number_of_leading_zeros(fraction_digits)
end
def number_of_leading_zeros(number) when is_list(number) do
Enum.take_while(number, fn c -> c == ?0 or c == 0 end)
|> length
end
@doc """
Returns the number of trailing zeros in an
integer number.
* `number` is an integer.
Returns the number of trailing zeros in the fractional
part of an integer.
## Examples
iex> Cldr.Digits.number_of_trailing_zeros(123000)
3
"""
def number_of_trailing_zeros(number) when is_integer(number) do
{integer_digits, _fraction_digits, _sign} = to_tuple(number)
number_of_trailing_zeros(integer_digits)
end
def number_of_trailing_zeros(number) when is_list(number) do
number
|> Enum.reverse
|> Enum.take_while(fn c -> c == ?0 or c == 0 end)
|> length
end
@doc """
Converts given number to a list representation.
Given an IEEE 754 float, computes the shortest, correctly rounded list of
digits that converts back to the same Double value when read back with
String.to_float/1. Implements the algorithm from "Printing Floating-Point
Numbers Quickly and Accurately" in Proceedings of the SIGPLAN '96 Conference
on Programming Language Design and Implementation.
Returns a tuple comprising a charlist for the integer part,
a charlist for the fractional part and an integer for the sign.
"""
# Code extracted from:
# https://github.com/ewildgoose/elixir-float_pp/blob/master/lib/float_pp/digits.ex,
# which is licensed under http://www.apache.org/licenses/LICENSE-2.0
@spec to_tuple(Decimal.t() | number) :: {list(), list(), integer}
def to_tuple(number) do
{mantissa, exp, sign} = to_digits(number)
mantissa =
cond do
# Need to right fill with zeros
exp > length(mantissa) ->
mantissa ++ :lists.duplicate(exp - length(mantissa), 0)
# Need to left fill with zeros
exp < 0 ->
:lists.duplicate(abs(exp), 0) ++ mantissa
true ->
mantissa
end
cond do
# Its an integer
exp == length(mantissa) ->
{mantissa, [], sign}
# It's a fraction with no integer part
exp <= 0 ->
{[], mantissa, sign}
# It's a fraction
exp > 0 and exp < length(mantissa) ->
{integer, fraction} = :lists.split(exp, mantissa)
{integer, fraction, sign}
end
end
@doc """
Computes a iodata list of the digits of the given IEEE 754 floating point number,
together with the location of the decimal point as {digits, place, positive}.
A "compact" representation is returned, so there may be fewer digits returned
than the decimal point location.
"""
def to_digits(0.0), do: {[0], 1, 1}
def to_digits(0), do: {[0], 1, 1}
def to_digits(float) when is_float(float) do
# Find mantissa and exponent from IEEE-754 packed notation
{frac, exp} = frexp(float)
# Scale fraction to integer (and adjust mantissa to compensate)
frac = trunc(abs(frac) * @two53)
exp = exp - 53
# Compute digits
flonum(float, frac, exp)
end
if Code.ensure_loaded?(Decimal) and function_exported?(Decimal, :normalize, 1) do
def to_digits(%Decimal{} = number) do
%Decimal{coef: coef, exp: exp, sign: sign} = Decimal.normalize(number)
{digits, _place, _sign} = to_digits(coef)
{digits, length(digits) + exp, sign}
end
else
def to_digits(%Decimal{} = number) do
%Decimal{coef: coef, exp: exp, sign: sign} = Decimal.reduce(number)
{digits, _place, _sign} = to_digits(coef)
{digits, length(digits) + exp, sign}
end
end
def to_digits(integer) when is_integer(integer) when integer >= 0 do
digits = Integer.digits(integer)
{digits, length(digits), 1}
end
def to_digits(integer) when is_integer(integer) do
digits = Integer.digits(integer)
{digits, length(digits), -1}
end
@doc """
Takes a list of digits and coverts them back to a number of the same
type as `number`.
"""
def to_number(digits, number) when is_integer(number), do: to_integer(digits)
def to_number(digits, number) when is_float(number), do: to_float(digits)
def to_number(digits, %Decimal{}), do: to_decimal(digits)
def to_number(digits, :integer), do: to_integer(digits)
def to_number(digits, :float), do: to_float(digits)
def to_number(digits, :decimal), do: to_decimal(digits)
def to_integer({digits, place, sign}) do
{int_digits, _fraction_digits} = Enum.split(digits, place)
Integer.undigits(int_digits) * sign
end
def to_float({[0], _place, _sign}) do
0.0
end
def to_float({digits, place, sign}) when length(digits) >= place do
Integer.undigits(digits) / power_of_10(length(digits) - place) * sign
end
def to_float({digits, place, sign}) do
Integer.undigits(digits) * power_of_10(place - length(digits)) * sign * 1.0
end
def to_decimal({digits, place, sign}) do
%Decimal{coef: Integer.undigits(digits), exp: place - length(digits), sign: sign}
end
############################################################################
# The following functions are Elixir translations of the original paper:
# "Printing Floating-Point Numbers Quickly and Accurately"
# http://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf
# See the paper for further explanation
_ = """
Set initial values {r, s, m+, m-}
based on table 1 from FP-Printing paper
Assumes frac is scaled to integer (and exponent scaled appropriately)
"""
defp flonum(float, frac, exp) do
round = Integer.is_even(frac)
if exp >= 0 do
b_exp = bsl(1, exp)
if frac !== @two52 do
scale(frac * b_exp * 2, 2, b_exp, b_exp, round, round, float)
else
scale(frac * b_exp * 4, 4, b_exp * 2, b_exp, round, round, float)
end
else
if exp === @min_e or frac !== @two52 do
scale(frac * 2, bsl(1, 1 - exp), 1, 1, round, round, float)
else
scale(frac * 4, bsl(1, 2 - exp), 2, 1, round, round, float)
end
end
end
@log_0_approx -60
def scale(r, s, m_plus, m_minus, low_ok, high_ok, float) do
# TODO: Benchmark removing the log10 and using the approximation given in original paper?
est =
if float == 0 do
@log_0_approx
else
trunc(Float.ceil(:math.log10(abs(float)) - 1.0e-10))
end
if est >= 0 do
fixup(r, s * power_of_10(est), m_plus, m_minus, est, low_ok, high_ok, float)
else
scale = power_of_10(-est)
fixup(r * scale, s, m_plus * scale, m_minus * scale, est, low_ok, high_ok, float)
end
end
def fixup(r, s, m_plus, m_minus, k, low_ok, high_ok, float) do
too_low = if high_ok, do: r + m_plus >= s, else: r + m_plus > s
if too_low do
{generate(r, s, m_plus, m_minus, low_ok, high_ok), k + 1, sign(float)}
else
{generate(r * 10, s, m_plus * 10, m_minus * 10, low_ok, high_ok), k, sign(float)}
end
end
defp generate(r, s, m_plus, m_minus, low_ok, high_ok) do
d = div(r, s)
r = rem(r, s)
tc1 = if low_ok, do: r <= m_minus, else: r < m_minus
tc2 = if high_ok, do: r + m_plus >= s, else: r + m_plus > s
if not tc1 do
if not tc2 do
[d | generate(r * 10, s, m_plus * 10, m_minus * 10, low_ok, high_ok)]
else
[d + 1]
end
else
if not tc2 do
[d]
else
if r * 2 < s do
[d]
else
[d + 1]
end
end
end
end
############################################################################
# Utility functions
# FIXME: We don't handle +/-inf and NaN inputs. Not believed to be an issue in
# Elixir, but beware future-self reading this...
# The frexp() function is as per the clib function with the same name. It breaks
# the floating-point number value into a normalized fraction and an integral
# power of 2.
#
# Returns {frac, exp}, where the magnitude of frac is in the interval
# [1/2, 1) or 0, and value = frac*(2^exp).
@doc false
def frexp(value) do
<<sign::1, exp::11, frac::52>> = <<value::float>>
frexp(sign, frac, exp)
end
def frexp(_Sign, 0, 0) do
{0.0, 0}
end
# Handle denormalised values
def frexp(sign, frac, 0) do
exp = bitwise_length(frac)
<<f::float>> = <<sign::1, @float_bias::11, frac - 1::52>>
{f, -@float_bias - 52 + exp}
end
# Handle normalised values
def frexp(sign, frac, exp) do
<<f::float>> = <<sign::1, @float_bias::11, frac::52>>
{f, exp - @float_bias}
end
_ = """
Return the number of significant bits needed to store the given number
"""
defp bitwise_length(value) do
bitwise_length(value, 0)
end
defp bitwise_length(0, n), do: n
defp bitwise_length(value, n), do: bitwise_length(bsr(value, 1), n + 1)
defp sign(float) when float < 0, do: -1
defp sign(_float), do: 1
end