# cquill
A compile-time safe data access library for Gleam.
[](https://hex.pm/packages/cquill)
[](https://hexdocs.pm/cquill/)
**"Ecto, but scaled down and typed, for Gleam"** — Schema-like types, composable queries, and adapter-based persistence without locking into any particular database.
## Design Philosophy
- **Compile-time safety over runtime convenience** — Invalid queries should fail at compile time
- **Explicit over implicit** — No magic; transformations are visible and traceable
- **Gleam-idiomatic** — Leverage Result types, pipelines, and the module system naturally
- **Adapter-first** — Define persistence boundaries early; real DBs are just one adapter
- **Small, composable modules** — Each module has one responsibility
## Architecture
cquill follows a layered architecture with clear boundaries:
```
┌─────────────────────────────────────────┐
│ Your Application │
├─────────────────────────────────────────┤
│ Schema │ Changeset │ Query │ ← Pure, no I/O
│ (types) │ (validation)│ (builder) │
├─────────────────────────────────────────┤
│ Repo │ ← Public API
├─────────────────────────────────────────┤
│ Memory │ Postgres │ (Future) │ ← Adapters
│ Adapter │ Adapter │ Adapters │
└─────────────────────────────────────────┘
```
## Installation
```sh
gleam add cquill
```
## Quick Start
### Defining Schemas
```gleam
import cquill/schema
import cquill/schema/field
// Define your schema - this describes the table structure
let user_schema = schema.new("users")
|> schema.add_field(field.integer("id") |> field.primary_key)
|> schema.add_field(field.string("email") |> field.not_null)
|> schema.add_field(field.string("name") |> field.nullable)
|> schema.add_field(field.boolean("active") |> field.not_null)
|> schema.add_field(field.integer("age") |> field.nullable)
```
### Building Queries
```gleam
import cquill/query
// Build queries using composable pipelines
let active_users = query.from(user_schema)
|> query.where(query.eq_bool("active", True))
|> query.order_by_desc("created_at")
|> query.limit(10)
// Queries are just data - inspect them for debugging
let debug_str = query.to_debug_string(active_users)
```
### Executing Queries (Memory Adapter)
The memory adapter is perfect for testing and development:
```gleam
import cquill/adapter
import cquill/adapter/memory
import gleam/dynamic
pub fn example() {
// Create an in-memory store with a table and column metadata
// Column names enable WHERE clause filtering beyond just the primary key
let store = memory.new_store()
|> memory.create_table_with_columns("users", "id", [
"id", "email", "name", "active", "age",
])
// Insert data (column order must match the columns list above)
let row = [
dynamic.int(1),
dynamic.string("alice@example.com"),
dynamic.string("Alice"),
dynamic.bool(True),
dynamic.int(30),
]
let assert Ok(store) = memory.insert_row(store, "users", "1", row)
// Query using the adapter - WHERE clauses filter by any column
let adp = memory.memory_adapter()
let compiled = adapter.CompiledQuery(
sql: "SELECT * FROM users WHERE active = $1",
params: [adapter.ParamBool(True)],
expected_columns: 5,
)
case adapter.query(adp, store, compiled) {
Ok(rows) -> // rows is List(List(Dynamic)) - filtered by active = True
Error(err) -> // handle error
}
}
```
### Validating Data with Changesets
```gleam
import cquill/changeset
import gleam/dict
import gleam/dynamic
import gleam/option.{Some}
pub fn validate_user(data: Dict(String, Dynamic)) {
changeset.new(data)
|> changeset.validate_required(["email", "name"])
|> changeset.validate_format("email", "^[^@]+@[^@]+$")
|> changeset.validate_length("name", min: 2, max: 100)
|> changeset.validate_number_range("age", min: Some(0), max: Some(150))
|> changeset.apply()
}
```
## Key Features
- **Schemas as data** — Define structure without coupling to persistence
- **Composable queries** — Build complex queries from simple, reusable parts
- **Changesets** — Validate and transform data before persistence
- **Adapter abstraction** — Same API works with Postgres, in-memory, or custom backends
- **Testable by design** — Use in-memory adapter for fast, isolated tests
## Database Migrations
cquill focuses on runtime data access, not schema evolution. We recommend using dedicated migration tools:
| Tool | Best For | Installation |
|------|----------|--------------|
| [dbmate](https://github.com/amacneil/dbmate) | Simple SQL migrations | `brew install dbmate` |
| [sqitch](https://sqitch.org/) | Complex dependency chains | `brew install sqitch` |
| [flyway](https://flywaydb.org/) | Enterprise environments | `brew install flyway` |
### Quick Start with dbmate
```bash
# Create a migration
dbmate new add_users_table
# Apply migrations
dbmate up
# Regenerate cquill types
gleam run -m cquill_cli generate
```
See [docs/MIGRATIONS.md](docs/MIGRATIONS.md) for the complete migration guide, including:
- CI/CD integration examples
- Schema drift detection
- Makefile templates
- Best practices
## Status
This library is currently in early development. See the [GitHub Issues](https://github.com/justin4957/cquill/issues) for the development roadmap.
### Roadmap
- **Phase 0**: Foundation & Research
- **Phase 1**: Core Query Execution
- **Phase 2**: Code Generation (MVP)
- **Phase 3**: Type-Safe Query Builder
- **Phase 4**: Transactions & Advanced Features
- **Phase 5**: Developer Experience
## Development
```sh
gleam test # Run all tests
gleam format # Format code
gleam docs build # Build documentation
```
Further documentation can be found at <https://hexdocs.pm/cquill>.
## License
Apache-2.0