<p align="center">
<img src="assets/crucible_harness.svg" alt="Harness" width="150"/>
</p>
# CrucibleHarness
[](https://elixir-lang.org)
[](https://hex.pm/packages/crucible_harness)
[](https://hexdocs.pm/crucible_harness)
[](https://github.com/North-Shore-AI/crucible_harness/blob/main/LICENSE)
**Automated Experiment Orchestration for AI Research**
ResearchHarness is a comprehensive Elixir library for orchestrating, executing, and analyzing large-scale AI research experiments. It provides the infrastructure to systematically run experiments across multiple conditions, datasets, and configurations while maintaining reproducibility, fault tolerance, and detailed statistical analysis.
Think of it as **"pytest + MLflow + Weights & Biases"** for Elixir AI research.
## Features
- **Declarative Experiment Definition** - DSL for expressing complex experimental designs
- **Parallel Execution** - Leverage BEAM's concurrency for efficient multi-condition runs
- **Fault Tolerance** - Resume experiments after failures without data loss
- **Statistical Analysis** - Automated significance testing across all condition pairs
- **Multi-Format Reporting** - Generate Markdown, LaTeX, HTML, and Jupyter notebooks
- **Cost Management** - Estimate and control API costs before execution
- **Reproducibility** - Version control for experiments, controlled random seeds, full audit trails
- **Lifecycle Hooks** (v0.2.0) - Extensible callbacks for setup, teardown, and custom error handling
- **Error Recovery** (v0.2.0) - Automatic retry with exponential backoff and circuit breaker
- **Metric Validation** (v0.2.0) - Runtime schema validation with type coercion
## Quick Start
### 1. Define an Experiment
```elixir
defmodule MyExperiment do
use CrucibleHarness.Experiment
name "My Research Experiment"
description "Comparing baseline vs treatment"
dataset :mmlu_200
conditions [
%{name: "baseline", fn: &baseline_condition/1},
%{name: "treatment", fn: &treatment_condition/1}
]
metrics [:accuracy, :latency_p99, :cost_per_query]
repeat 3
config %{
timeout: 30_000,
rate_limit: 10
}
def baseline_condition(query) do
# Your implementation
%{prediction: "answer", accuracy: 0.75, latency: 100, cost: 0.01}
end
def treatment_condition(query) do
# Your implementation
%{prediction: "answer", accuracy: 0.82, latency: 150, cost: 0.02}
end
end
```
### 2. Run the Experiment
```elixir
# Estimate cost and time first
{:ok, estimates} = CrucibleHarness.estimate(MyExperiment)
IO.puts("Estimated cost: $#{estimates.cost.total_cost}")
IO.puts("Estimated time: #{estimates.time.estimated_duration}ms")
# Run the experiment
{:ok, report} = CrucibleHarness.run(MyExperiment,
output_dir: "./results",
formats: [:markdown, :latex, :html]
)
```
### 3. View Results
Reports are automatically generated in your specified formats:
- `results/exp_12345_report.markdown` - Markdown report
- `results/exp_12345_report.latex` - LaTeX tables and figures
- `results/exp_12345_report.html` - Interactive HTML report
## Advanced Features
### Lifecycle Hooks (v0.2.0)
Hooks provide extension points during experiment execution for setup, teardown, logging, and custom error handling:
```elixir
defmodule MyExperiment do
use CrucibleHarness.Experiment
name "Experiment with Hooks"
dataset :my_dataset
conditions [%{name: "test", fn: &test_condition/1}]
metrics [:accuracy, :latency]
# Called once before experiment starts - can modify config
before_experiment fn config ->
Logger.info("Starting experiment: #{config.name}")
{:ok, Map.put(config, :start_time, DateTime.utc_now())}
end
# Called once after experiment completes
after_experiment fn config, results ->
duration = DateTime.diff(DateTime.utc_now(), config.start_time, :second)
Logger.info("Completed in #{duration}s with #{length(results)} results")
:ok
end
# Called before each condition execution
before_condition fn condition, query ->
Logger.metadata(condition: condition.name, query_id: query.id)
:ok
end
# Called after each condition execution
after_condition fn condition, query, result ->
:telemetry.execute([:experiment, :task, :complete], %{latency: result.latency}, %{})
:ok
end
# Called when a condition fails - return :retry, :skip, or :abort
on_error fn condition, query, error ->
case error do
{:error, :timeout} -> :retry
{:error, :rate_limited} -> :retry
{:error, :authentication_failed} -> :abort
_ -> :skip
end
end
def test_condition(query), do: %{accuracy: 0.85, latency: 100}
end
```
**Hook Signatures:**
- `before_experiment(config)` → `{:ok, config}` or `:ok`
- `after_experiment(config, results)` → `:ok`
- `before_condition(condition, query)` → `:ok`
- `after_condition(condition, query, result)` → `:ok`
- `on_error(condition, query, error)` → `:retry` | `:skip` | `:abort`
All hooks are optional and errors in hooks are handled gracefully (they won't crash your experiment).
### Error Recovery (v0.2.0)
Configure automatic retry with exponential backoff for transient failures:
```elixir
config %{
error_handling: %{
# Retry strategy: :exponential_backoff, :constant, or :linear
retry_strategy: :exponential_backoff,
max_retries: 3,
initial_delay_ms: 1000,
max_delay_ms: 30_000,
backoff_factor: 2.0,
jitter: true, # Add randomness to prevent thundering herd
# Dead letter queue for permanently failed tasks
dlq_enabled: true,
dlq_path: "./failed_tasks.jsonl",
# Circuit breaker - abort if failure rate exceeds threshold
max_failure_rate: 0.1, # Abort if >10% tasks fail
failure_window: 100 # Over last 100 tasks
}
}
```
**Error Classification:**
- **Retryable errors:** `:timeout`, `:connection_refused`, `:rate_limited`, HTTP 429/502/503/504
- **Permanent errors:** `:invalid_query`, `:authentication_failed`, HTTP 400/401/403/404
Task results now include retry information:
```elixir
%{
result: {:ok, %{accuracy: 0.85}},
attempts: 2,
retry_delays: [1000, 2000],
final_status: :success, # :success | :failed_permanent | :failed_retries_exhausted
error_history: [%{attempt: 1, error: :timeout, timestamp: ~U[...]}]
}
```
### Metric Validation (v0.2.0)
Define schemas to validate metrics at runtime and catch errors early:
```elixir
defmodule MyExperiment do
use CrucibleHarness.Experiment
name "Validated Experiment"
dataset :my_dataset
conditions [%{name: "test", fn: &test_condition/1}]
metrics [:accuracy, :latency, :cost]
# Define validation schemas for each metric
metric_schemas %{
accuracy: %{type: :float, min: 0.0, max: 1.0, required: true},
latency: %{type: :number, min: 0, unit: :milliseconds, required: true},
cost: %{type: :float, min: 0.0, required: false, default: 0.0},
custom: %{
type: :map,
schema: %{
value: %{type: :number, min: 0},
confidence: %{type: :float, min: 0.0, max: 1.0}
}
}
}
config %{
metric_validation: %{
enabled: true,
on_invalid: :log_and_continue, # :log_and_continue | :log_and_retry | :abort
coerce_types: true # Try to convert "0.85" -> 0.85
}
}
def test_condition(query) do
%{accuracy: 0.85, latency: 123, custom: %{value: 42, confidence: 0.95}}
end
end
```
**Schema Helpers:**
```elixir
alias CrucibleHarness.Validation.Schema
# Common schema types
Schema.float(min: 0.0, max: 1.0) # Float with range
Schema.number(min: 0) # Integer or float
Schema.map(schema: %{...}) # Nested map validation
Schema.percentage() # 0-100 float
Schema.probability() # 0-1 float
Schema.positive_number() # >= 0
Schema.duration_ms() # Positive number in milliseconds
```
### Parameter Sweeps
```elixir
defmodule EnsembleSizeSweep do
use CrucibleHarness.Experiment
name "Ensemble Size Sweep (1-10 models)"
dataset :mmlu_200
conditions for n <- 1..10 do
%{
name: "ensemble_#{n}",
fn: &ensemble(&1, models: n)
}
end
metrics [:accuracy, :latency_p99, :cost_per_query]
repeat 5
end
```
### Cost Budgets
```elixir
cost_budget %{
max_total: 100.00, # $100 maximum
max_per_condition: 25.00, # $25 per condition max
currency: :usd
}
```
### Statistical Analysis
```elixir
statistical_analysis %{
significance_level: 0.05,
multiple_testing_correction: :bonferroni,
confidence_interval: 0.95
}
```
### Checkpointing and Resume
```elixir
# Run experiment (will checkpoint automatically)
{:ok, report} = CrucibleHarness.run(MyExperiment)
# If interrupted, resume from last checkpoint
{:ok, report} = CrucibleHarness.resume("exp_12345")
```
## Architecture
```
CrucibleHarness
├── Experiment (DSL & Definition)
├── Runner (Execution Engine with GenStage/Flow)
├── Collector (Results Aggregation & Statistical Analysis)
├── Reporter (Multi-Format Output Generation)
├── Hooks (Lifecycle Hook Execution) [v0.2.0]
│ └── Executor (Safe hook execution with error handling)
├── Errors (Error Recovery Framework) [v0.2.0]
│ ├── Classifier (Error type classification)
│ ├── Retry (Exponential backoff logic)
│ └── DLQ (Dead letter queue for failed tasks)
├── Validation (Metric Validation) [v0.2.0]
│ ├── Schema (Schema definition helpers)
│ └── MetricValidator (Runtime validation)
└── Utilities (Cost/Time Estimation, Checkpointing)
```
## Example Experiments
See the `examples/` directory for complete examples:
- `simple_comparison.ex` - Basic two-condition comparison
- `ensemble_comparison.ex` - Multi-condition ensemble evaluation
## API Reference
### Main Functions
#### `CrucibleHarness.run/2`
Runs an experiment and generates reports.
**Options:**
- `:output_dir` - Directory for results (default: "./results")
- `:formats` - Report formats (default: `[:markdown]`)
- `:checkpoint_dir` - Checkpoint directory (default: "./checkpoints")
- `:dry_run` - Validate without executing (default: `false`)
#### `CrucibleHarness.estimate/1`
Estimates cost and time without running the experiment.
#### `CrucibleHarness.resume/1`
Resumes a failed or interrupted experiment from checkpoint.
### Experiment DSL
#### Required Fields
- `name` - Experiment name
- `dataset` - Dataset identifier
- `conditions` - List of experimental conditions
- `metrics` - Metrics to collect
#### Optional Fields
- `description` - Detailed description
- `author` - Experiment author
- `version` - Experiment version
- `tags` - Tags for organization
- `repeat` - Number of repetitions (default: 1)
- `config` - Execution configuration
- `cost_budget` - Budget constraints
- `statistical_analysis` - Analysis parameters
- `custom_metrics` - Custom metric definitions
- `metric_schemas` - Validation schemas for metrics (v0.2.0)
- `before_experiment` - Hook called before experiment starts (v0.2.0)
- `after_experiment` - Hook called after experiment completes (v0.2.0)
- `before_condition` - Hook called before each condition (v0.2.0)
- `after_condition` - Hook called after each condition (v0.2.0)
- `on_error` - Hook for custom error handling (v0.2.0)
## Configuration
Add to your `config.exs`:
```elixir
config :research_harness,
checkpoint_dir: "./checkpoints",
results_dir: "./results"
```
## Testing
```bash
mix test
```
## Installation
Add `research_harness` to your list of dependencies in `mix.exs`:
```elixir
def deps do
[
{:crucible_harness, "~> 0.2.0"}
]
end
```
Or install from GitHub:
```elixir
def deps do
[
{:crucible_harness, github: "nshkrdotcom/elixir_ai_research", sparse: "apps/research_harness"}
]
end
```
## Documentation
Documentation can be generated with [ExDoc](https://github.com/elixir-lang/ex_doc):
```bash
mix docs
```
## Contributing
This is part of the Spectra AI research infrastructure. Contributions welcome!
## License
MIT License - see [LICENSE](https://github.com/North-Shore-AI/crucible_harness/blob/main/LICENSE) file for details
## Acknowledgments
Built for systematic AI research experimentation with a focus on ensemble methods, hedging strategies, and model comparisons.