<p align="center">
<img src="assets/crucible_trace.svg" alt="Trace" width="150"/>
</p>
# CrucibleTrace
**Structured causal reasoning chain logging for LLM code generation**
CausalTrace enables transparency and debugging in LLM-based code generation by capturing the decision-making process. It logs causal reasoning chains with events, alternatives considered, confidence levels, and supporting rationale.
## Features
- **Event Tracking**: Capture decision points with alternatives and reasoning
- **Chain Management**: Organize events into coherent reasoning chains
- **LLM Integration**: Parse events directly from LLM output with XML tags
- **Persistent Storage**: Save chains to disk in JSON format with search capabilities
- **Interactive Visualization**: Generate beautiful HTML views with filtering and statistics
- **Analysis Tools**: Query events, calculate statistics, find decision points
- **Multiple Export Formats**: JSON, Markdown, and CSV exports
## Installation
Add `causal_trace` to your list of dependencies in `mix.exs`:
```elixir
def deps do
[
{:crucible_trace, "~> 0.1.0"}
]
end
```
Or install from GitHub:
```elixir
def deps do
[
]
end
```
## Quick Start
### Creating Events Manually
```elixir
# Create a new chain
chain = CrucibleTrace.new_chain("API Implementation")
# Create an event
event = CrucibleTrace.create_event(
:hypothesis_formed,
"Use Phoenix framework",
"Well-established with great documentation and active community",
alternatives: ["Plug alone", "Custom HTTP server"],
confidence: 0.9
)
# Add event to chain
chain = CrucibleTrace.add_event(chain, event)
# View statistics
stats = CrucibleTrace.statistics(chain)
# => %{total_events: 1, avg_confidence: 0.9, ...}
```
### Parsing LLM Output
```elixir
llm_output = """
<event type="hypothesis_formed">
<decision>Use GenServer for state management</decision>
<alternatives>Agent, ETS table, Database</alternatives>
<reasoning>GenServer provides good balance of simplicity and features</reasoning>
<confidence>0.85</confidence>
<code_section>StateManager</code_section>
</event>
<code>
defmodule StateManager do
use GenServer
# ... implementation
end
</code>
"""
# Parse into a chain
{:ok, chain} = CrucibleTrace.parse_llm_output(llm_output, "State Manager Implementation")
# Extract just the code
code = CrucibleTrace.extract_code(llm_output)
```
### Building Prompts for LLMs
```elixir
base_spec = """
Implement a caching layer for database queries with:
- TTL support for cache entries
- Cache invalidation on writes
- Thread-safe operations
"""
# Generate a prompt that instructs the LLM to emit causal trace events
prompt = CrucibleTrace.build_causal_prompt(base_spec)
# Send prompt to your LLM, it will include event tags in its response
```
### Visualization
```elixir
# Generate interactive HTML visualization
html = CrucibleTrace.visualize(chain, style: :light)
# Save to file
{:ok, path} = CrucibleTrace.save_visualization(chain, "trace.html")
# Or open directly in browser
{:ok, _path} = CrucibleTrace.open_visualization(chain)
```
### Storage and Retrieval
```elixir
# Save chain to disk
{:ok, path} = CrucibleTrace.save(chain)
# Load by ID
{:ok, loaded_chain} = CrucibleTrace.load(chain.id)
# List all chains
{:ok, chains} = CrucibleTrace.list_chains()
# Search with criteria
{:ok, results} = CrucibleTrace.search(
name_contains: "API",
min_events: 5,
created_after: ~U[2024-01-01 00:00:00Z]
)
# Export to different formats
{:ok, markdown} = CrucibleTrace.export(chain, :markdown)
{:ok, csv} = CrucibleTrace.export(chain, :csv)
```
### Analysis
```elixir
# Find decision points with alternatives
decisions = CrucibleTrace.find_decision_points(chain)
# Find low confidence events
uncertain = CrucibleTrace.find_low_confidence(chain, 0.7)
# Filter by event type
hypotheses = CrucibleTrace.get_events_by_type(chain, :hypothesis_formed)
# Custom filtering
high_conf = CrucibleTrace.filter_events(chain, fn e ->
e.confidence >= 0.9
end)
# Chain statistics
stats = CrucibleTrace.statistics(chain)
# => %{
# total_events: 10,
# event_type_counts: %{hypothesis_formed: 3, pattern_applied: 2, ...},
# avg_confidence: 0.87,
# duration_seconds: 45
# }
```
## Event Types
CausalTrace supports six event types:
- **`:hypothesis_formed`** - Initial approach or solution hypothesis
- **`:alternative_rejected`** - Explicit rejection of an alternative approach
- **`:constraint_evaluated`** - Evaluation of a constraint or requirement
- **`:pattern_applied`** - Application of a specific design pattern
- **`:ambiguity_flagged`** - Ambiguity encountered in specification
- **`:confidence_updated`** - Change in confidence for a decision
## Event Schema
Each event contains:
```elixir
%CrucibleTrace.Event{
id: "unique_event_id",
timestamp: ~U[2024-01-15 10:30:00Z],
type: :hypothesis_formed,
decision: "What was decided",
alternatives: ["Alternative 1", "Alternative 2"],
reasoning: "Why this decision was made",
confidence: 0.85, # 0.0 to 1.0
code_section: "ModuleName", # optional
spec_reference: "Section 3.2", # optional
metadata: %{} # optional
}
```
## LLM Integration
When using CausalTrace with LLMs, instruct them to emit events in this XML format:
```xml
<event type="hypothesis_formed">
<decision>Your decision</decision>
<alternatives>Alt1, Alt2, Alt3</alternatives>
<reasoning>Your reasoning</reasoning>
<confidence>0.85</confidence>
<code_section>ModuleName</code_section>
<spec_reference>Spec Section</spec_reference>
</event>
```
Use `CrucibleTrace.build_causal_prompt/1` to automatically generate prompts with these instructions.
## Architecture
CausalTrace is organized into six main modules:
- **`CausalTrace`** - Main API and convenience functions
- **`CrucibleTrace.Event`** - Event struct and operations
- **`CrucibleTrace.Chain`** - Chain struct and collection management
- **`CrucibleTrace.Parser`** - LLM output parsing and prompt building
- **`CrucibleTrace.Storage`** - Persistence and retrieval
- **`CrucibleTrace.Viewer`** - HTML visualization generation
## Examples
See `examples/basic_usage.exs` for comprehensive examples including:
- Creating events manually
- Parsing LLM output
- Analyzing chains
- Building prompts
- Storage operations
- HTML visualization
- Chain merging
Run examples with:
```bash
mix run examples/basic_usage.exs
```
## Testing
Run the test suite:
```bash
mix test
```
Run with coverage:
```bash
mix test --cover
```
## Configuration
CausalTrace can be configured in your `config/config.exs`:
```elixir
config :causal_trace,
storage_dir: "causal_traces", # Default storage directory
default_format: :json, # Default storage format
visualization_style: :light # Default HTML theme (:light or :dark)
```
## Use Cases
### Debugging LLM Code Generation
Track why an LLM made specific implementation choices:
```elixir
# Parse LLM output with reasoning
{:ok, chain} = CrucibleTrace.parse_llm_output(llm_response, "Feature Implementation")
# Find low confidence decisions that need review
uncertain = CrucibleTrace.find_low_confidence(chain, 0.7)
# Visualize to understand the reasoning flow
CrucibleTrace.open_visualization(chain)
```
### Comparing Alternative Approaches
Analyze which alternatives were considered:
```elixir
decisions = CrucibleTrace.find_decision_points(chain)
Enum.each(decisions, fn d ->
IO.puts("Chose: #{d.decision}")
IO.puts("Over: #{Enum.join(d.alternatives, ", ")}")
IO.puts("Because: #{d.reasoning}\n")
end)
```
### Building Training Data
Export reasoning chains for fine-tuning:
```elixir
{:ok, chains} = CrucibleTrace.list_chains()
training_data =
chains
|> Enum.filter(&(&1.event_count > 5))
|> Enum.map(fn metadata ->
{:ok, chain} = CrucibleTrace.load(metadata.id)
CrucibleTrace.export(chain, :json)
end)
```
### Auditing AI Decisions
Maintain transparent records of AI reasoning:
```elixir
# Save all chains with metadata
CrucibleTrace.save(chain,
metadata: %{
model: "gpt-4",
user: "john@example.com",
project: "payment-system"
}
)
# Search audit logs
{:ok, results} = CrucibleTrace.search(
created_after: ~U[2024-01-01 00:00:00Z],
name_contains: "payment"
)
```
## Performance
- Event creation: < 1ms
- Parsing: ~10ms per event
- Storage: ~50ms per chain (depends on event count)
- Visualization: ~100ms for typical chains (20-50 events)
## Limitations
- XML parsing is regex-based (simple but not fully robust)
- Storage is file-based (no database backend yet)
- HTML visualization uses inline CSS (no external assets)
- No real-time collaboration features
## Roadmap
- [ ] More robust XML/JSON parsing
- [ ] Database storage backend option
- [ ] Real-time chain updates via Phoenix LiveView
- [ ] Diff visualization between chains
- [ ] Export to Mermaid diagrams
- [ ] Integration with popular LLM libraries
## Contributing
This is part of the Elixir AI Research project. Contributions welcome!
## License
MIT License - see [LICENSE](https://github.com/North-Shore-AI/crucible_trace/blob/main/LICENSE) file for details
## Documentation
Full documentation can be generated with ExDoc:
```bash
mix docs
```
Then open `doc/index.html` in your browser.
## Support
For questions or issues, please open an issue on the GitHub repository.