<p align="center">
<img src="assets/crucible_xai.svg" alt="CrucibleXAI" width="150"/>
</p>
# CrucibleXAI
**Explainable AI (XAI) Library for Elixir**
[](https://elixir-lang.org)
[](https://www.erlang.org)
[](https://github.com/North-Shore-AI/crucible_xai/blob/main/LICENSE)
[]()
[]()
---
A production-ready Explainable AI (XAI) library for Elixir, providing model interpretability through **LIME, SHAP, and Feature Attribution methods**. Built on Nx for high-performance numerical computing with comprehensive test coverage and strict quality standards.
**Version**: 0.2.0 | **Tests**: 141 passing | **Coverage**: 87.1%
## ✨ Features
### Currently Implemented
- ✅ **LIME Implementation**: Full LIME algorithm with local linear approximations
- ✅ **SHAP Implementation**: KernelSHAP with Shapley value computation
- ✅ **Multiple Sampling Strategies**: Gaussian, Uniform, Categorical, and Combined
- ✅ **Flexible Kernels**: Exponential and Cosine proximity weighting
- ✅ **Feature Selection**: Highest weights, Forward selection, Lasso-approximation
- ✅ **Interpretable Models**: Weighted Linear Regression and Ridge Regression
- ✅ **Coalition Sampling**: Efficient SHAP coalition generation and weighting
- ✅ **Batch Processing**: Efficient explanation of multiple instances
- ✅ **Model-Agnostic**: Works with any prediction function
- ✅ **High Performance**: Nx tensor operations, <50ms LIME, ~1s SHAP
- ✅ **Feature Attribution**: Permutation importance for global feature ranking
- ✅ **HTML Visualizations**: Interactive charts for LIME, SHAP, and comparisons
- ✅ **Well-Tested**: 141 tests (111 unit + 19 property-based + 11 doctests), >87% coverage
- ✅ **Zero Warnings**: Strict compilation with comprehensive type specifications
- ✅ **Shapley Properties**: Additivity, symmetry, and dummy properties validated
### Roadmap
- 🚧 **Gradient-based Attribution**: Gradient×Input, Integrated Gradients (Phase 3b)
- 🚧 **Occlusion-based Attribution**: Sliding window occlusion sensitivity (Phase 3c)
- 🚧 **Global Interpretability**: Partial dependence plots, feature interactions (Phase 4)
- 🚧 **Visualization**: Interactive HTML plots and charts (Phase 5)
- 🚧 **CrucibleTrace Integration**: Combined explanations with reasoning traces (Phase 6)
## 📦 Installation
Add `crucible_xai` to your list of dependencies in `mix.exs`:
```elixir
def deps do
[
{:crucible_xai, github: "North-Shore-AI/crucible_xai"}
]
end
```
## 🚀 Quick Start
### Basic LIME Explanation
```elixir
# Define your prediction function (any model that returns a number)
predict_fn = fn [x, y] -> 2.0 * x + 3.0 * y + 1.0 end
# Instance to explain
instance = [1.0, 2.0]
# Generate explanation
explanation = CrucibleXai.explain(instance, predict_fn)
# View feature weights
IO.inspect(explanation.feature_weights)
# => %{0 => 2.0, 1 => 3.0}
# Get top features
top_features = CrucibleXAI.Explanation.top_features(explanation, 5)
# View as text
IO.puts(CrucibleXAI.Explanation.to_text(explanation))
```
### Customized LIME
```elixir
# Fine-tune LIME parameters
explanation = CrucibleXai.explain(
instance,
predict_fn,
num_samples: 5000, # More samples = better approximation
kernel_width: 0.75, # Locality width
kernel: :exponential, # or :cosine
num_features: 10, # Top K features to select
feature_selection: :lasso, # :highest_weights, :forward_selection, or :lasso
sampling_method: :gaussian # :gaussian, :uniform, or :combined
)
# Check explanation quality
IO.puts("R² score: #{explanation.score}") # Should be > 0.8 for good local fidelity
```
### Batch Explanations
```elixir
# Explain multiple instances efficiently
instances = [
[1.0, 2.0],
[2.0, 3.0],
[3.0, 4.0]
]
explanations = CrucibleXai.explain_batch(instances, predict_fn, num_samples: 1000)
# Analyze consistency
Enum.each(explanations, fn exp ->
IO.puts("R² = #{exp.score}, Duration = #{exp.metadata.duration_ms}ms")
end)
```
### SHAP Explanations
```elixir
# Use SHAP for theoretically grounded feature attribution
predict_fn = fn [x, y] -> 2.0 * x + 3.0 * y end
instance = [1.0, 1.0]
background = [[0.0, 0.0], [1.0, 1.0], [2.0, 2.0]] # Representative baseline samples
# Get Shapley values
shap_values = CrucibleXai.explain_shap(instance, background, predict_fn, num_samples: 2000)
# => %{0 => 2.0, 1 => 3.0}
# Verify additivity: SHAP values sum to (prediction - baseline)
prediction = predict_fn.(instance)
baseline = predict_fn.([0.0, 0.0])
shap_sum = Enum.sum(Map.values(shap_values))
# shap_sum ≈ prediction - baseline
# Verify with built-in validator
is_valid = CrucibleXAI.SHAP.verify_additivity(shap_values, instance, background, predict_fn)
# => true
```
### Feature Attribution (Permutation Importance)
```elixir
# Calculate global feature importance across validation set
predict_fn = fn [age, income, credit_score] ->
0.5 * age + 0.3 * income + 0.2 * credit_score
end
validation_data = [
{[25.0, 50000.0, 700.0], 25.5},
{[35.0, 75000.0, 750.0], 35.3},
{[45.0, 100000.0, 800.0], 45.2}
# ... more validation samples
]
# Compute permutation importance
importance = CrucibleXai.feature_importance(
predict_fn,
validation_data,
metric: :mse,
num_repeats: 10
)
# => %{
# 0 => %{importance: 1.2, std_dev: 0.3}, # Age
# 1 => %{importance: 0.8, std_dev: 0.2}, # Income
# 2 => %{importance: 0.4, std_dev: 0.1} # Credit score
# }
# Get top 2 features
top_features = CrucibleXAI.FeatureAttribution.top_k(importance, 2)
# => [{0, %{importance: 1.2, ...}}, {1, %{importance: 0.8, ...}}]
```
### Interactive Visualizations
```elixir
# Generate HTML visualization
explanation = CrucibleXai.explain(instance, predict_fn)
html = CrucibleXAI.Visualization.to_html(
explanation,
feature_names: %{0 => "Age", 1 => "Income", 2 => "Credit Score"}
)
# Save to file
CrucibleXAI.Visualization.save_html(explanation, "explanation.html")
# Compare LIME vs SHAP
lime_exp = CrucibleXai.explain(instance, predict_fn)
shap_vals = CrucibleXai.explain_shap(instance, background, predict_fn)
comparison_html = CrucibleXAI.Visualization.comparison_html(
lime_exp,
shap_vals,
instance,
feature_names: %{0 => "Feature A", 1 => "Feature B"}
)
File.write!("comparison.html", comparison_html)
```
## 📊 Understanding the Algorithms
### LIME: Local Interpretable Model-agnostic Explanations
#### How It Works
1. **Perturbation**: Generate samples around the instance (e.g., Gaussian noise)
2. **Prediction**: Get predictions from your black-box model
3. **Weighting**: Weight samples by proximity to the instance (closer = higher weight)
4. **Feature Selection**: Optionally select top K most important features
5. **Fit**: Train a simple linear model on weighted samples
6. **Extract**: Feature weights = explanation
#### Visual Example
```
Original Instance: [5.0, 10.0]
↓
Generate 5000 perturbed samples around it
↓
Get predictions from your complex model
↓
Weight samples (closer to [5.0, 10.0] = higher weight)
↓
Fit: prediction ≈ 2.1*feature₀ + 3.2*feature₁ + 0.5
↓
Explanation: Feature 1 has impact 3.2, Feature 0 has impact 2.1
```
### SHAP: SHapley Additive exPlanations
#### How It Works
1. **Coalition Generation**: Generate random feature subsets (coalitions)
2. **Coalition Instances**: For each coalition, create instance with only selected features
3. **Predictions**: Get predictions for all coalition instances
4. **SHAP Weighting**: Weight coalitions using SHAP kernel based on size
5. **Regression**: Solve weighted regression to get Shapley values
6. **Properties**: Guarantees additivity, symmetry, and dummy properties
#### Visual Example
```
Instance: [5.0, 10.0], Background: [0.0, 0.0]
↓
Generate coalitions: [0,0], [1,0], [0,1], [1,1], ...
↓
Create instances: [0,0], [5,0], [0,10], [5,10], ...
↓
Get predictions from model for each coalition
↓
Calculate SHAP kernel weights (empty/full coalitions get high weight)
↓
Solve: predictions = coalition_matrix @ shapley_values
↓
Result: φ₀ = 2.0, φ₁ = 3.0
Verify: φ₀ + φ₁ = prediction(5,10) - prediction(0,0) ✓
```
#### LIME vs SHAP
| Aspect | LIME | SHAP |
|--------|------|------|
| **Speed** | Fast (~50ms) | Slower (~1s) |
| **Theory** | Heuristic | Game theory (Shapley values) |
| **Guarantee** | Local fidelity | Additivity, symmetry, consistency |
| **Use When** | Quick insights, many instances | Precise attribution, fairness analysis |
## 🎯 Configuration Options
### Sampling Methods
```elixir
# Gaussian (default): Add normal noise scaled by feature std dev
sampling_method: :gaussian
# Uniform: Add uniform noise within a range
sampling_method: :uniform
# Categorical: Sample from possible categorical values
sampling_method: :categorical
# Combined: Mix continuous and categorical features
sampling_method: :combined
```
### Kernel Functions
```elixir
# Exponential (default): exp(-distance²/width²)
kernel: :exponential, kernel_width: 0.75
# Cosine: (1 + cos(π*distance))/2
kernel: :cosine
```
### Feature Selection
```elixir
# Highest Weights: Fastest, selects by absolute coefficient
feature_selection: :highest_weights
# Forward Selection: Greedy, adds features improving R²
feature_selection: :forward_selection
# Lasso: L1 regularization approximation via Ridge
feature_selection: :lasso
```
## 📖 API Documentation
### Main Functions
```elixir
# Single explanation
@spec CrucibleXai.explain(instance, predict_fn, opts) :: Explanation.t()
# Batch explanations
@spec CrucibleXai.explain_batch([instance], predict_fn, opts) :: [Explanation.t()]
```
### Explanation Struct
```elixir
%CrucibleXAI.Explanation{
instance: [1.0, 2.0], # Original instance
feature_weights: %{0 => 2.0, 1 => 3.0}, # Feature importance
intercept: 1.0, # Baseline value
score: 0.95, # R² goodness of fit
method: :lime, # XAI method used
metadata: %{ # Additional info
num_samples: 5000,
kernel: :exponential,
duration_ms: 45
}
}
```
### Utility Functions
```elixir
# Get top K features by importance
Explanation.top_features(explanation, k)
# Get features that increase prediction
Explanation.positive_features(explanation)
# Get features that decrease prediction
Explanation.negative_features(explanation)
# Feature importance (absolute values)
Explanation.feature_importance(explanation)
# Text visualization
Explanation.to_text(explanation, num_features: 10)
# JSON export
Explanation.to_map(explanation) |> Jason.encode!()
```
## 🏗️ Module Structure
```
lib/crucible_xai/
├── crucible_xai.ex # Public API
├── explanation.ex # Explanation struct & utilities
├── lime.ex # Main LIME algorithm
└── lime/
├── sampling.ex # Perturbation strategies
├── kernels.ex # Proximity weighting
├── interpretable_models.ex # Linear/Ridge regression
└── feature_selection.ex # Feature selection methods
```
## 🧪 Testing
```bash
# Run all tests
mix test
# Run with coverage
mix coveralls
# Run specific module tests
mix test test/crucible_xai/lime_test.exs
# Run property-based tests only
mix test --only property
# Quality checks
mix compile --warnings-as-errors # Zero warnings
mix dialyzer # Type checking
mix credo --strict # Code quality
```
## 📈 Performance
Typical performance on M1 Mac:
- Single explanation (5000 samples): **40-60ms**
- Batch of 100 instances: **~5 seconds**
- Linear model R² scores: **>0.95** (excellent local fidelity)
- Nonlinear model R² scores: **0.85-0.95** (good approximation)
## 🔬 Example Use Cases
### Model Debugging
```elixir
# Find where model relies on unexpected features
explanation = CrucibleXai.explain(problematic_instance, predict_fn)
top_features = Explanation.top_features(explanation, 5)
# => [{3, 0.85}, {7, 0.62}, {1, -0.45}, ...]
# Feature 3 shouldn't be important!
if {3, _} in top_features do
Logger.warn("Model unexpectedly uses feature 3")
end
```
### Model Comparison
```elixir
# Compare two models on same instance
exp_a = CrucibleXai.explain(instance, &model_a.predict/1)
exp_b = CrucibleXai.explain(instance, &model_b.predict/1)
# Different feature importance?
IO.puts("Model A top features: #{inspect(Explanation.top_features(exp_a, 3))}")
IO.puts("Model B top features: #{inspect(Explanation.top_features(exp_b, 3))}")
```
### Trust Validation
```elixir
# Validate model uses domain knowledge
explanations = CrucibleXai.explain_batch(validation_set, predict_fn)
# Check if important features make sense
Enum.each(explanations, fn exp ->
top = Explanation.top_features(exp, 1) |> hd() |> elem(0)
unless top in expected_important_features do
Logger.warn("Unexpected important feature: #{top}")
end
end)
```
## 📚 References
### Research Papers
- **Ribeiro, M. T., Singh, S., & Guestrin, C. (2016).** "Why Should I Trust You?": Explaining the Predictions of Any Classifier. *KDD*. [Paper](https://arxiv.org/abs/1602.04938)
### Books
- **Molnar, C. (2022).** Interpretable Machine Learning. [Online Book](https://christophm.github.io/interpretable-ml-book/)
## 🤝 Contributing
This is part of the Crucible AI Research Infrastructure. Contributions welcome!
## 📋 License
MIT License - see LICENSE file for details
---
**Built with ❤️ by North Shore AI** | [Documentation](https://hexdocs.pm/crucible_xai) | [GitHub](https://github.com/North-Shore-AI/crucible_xai)