defprotocol GenAI.ThreadProtocol do
@doc """
Specify a specific model or model picker.
This function allows you to define the model to be used for inference. You can either provide a specific model, like `Model.smartest()`, or a model picker function that dynamically selects the best model based on the context and available providers.
Examples:
* `Model.smartest()` - This will select the "smartest" available model at inference time, based on factors like performance and capabilities.
* `Model.cheapest(params: :best_effort)` - This will select the cheapest available model that can handle the given parameters and context size.
* `CustomProvider.custom_model` - This allows you to use a custom model from a user-defined provider.
"""
def with_model(context, model)
def with_tool(context, tool)
def with_tools(context, tools)
@doc """
Specify an API key for a provider.
"""
def with_api_key(context, provider, api_key)
@doc """
Specify an API org for a provider.
"""
def with_api_org(context, provider, api_org)
@doc """
Set a hyperparameter option.
Some options are model-specific. The value can be a literal or a picker function that dynamically determines the best value based on the context and model.
Examples:
* `Parameter.required(name, value)` - This sets a required parameter with the specified name and value.
* `Gemini.best_temperature_for(:chain_of_thought)` - This uses a picker function to determine the best temperature for the Gemini provider when using the "chain of thought" prompting technique.
"""
def with_setting(context, setting, value)
def with_safety_setting(context, safety_setting, threshold)
@doc """
Add a message to the conversation.
"""
def with_message(context, message, options)
@doc """
Add a list of messages to the conversation.
"""
def with_messages(context, messages, options)
@doc """
Start inference using a streaming handler.
If the selected model does not support streaming, the handler will be called with the final inference result.
"""
def stream(context, handler)
@doc """
Run inference.
This function performs the following steps:
* Picks the appropriate model and hyperparameters based on the provided context and settings.
* Performs any necessary pre-processing, such as RAG (Retrieval-Augmented Generation) or message consolidation.
* Runs inference on the selected model with the prepared input.
* Returns the inference result.
"""
def run(context)
end