# HyperLogLog for Erlang
This is an implementation of the HyperLogLog algorithm in
Erlang. Using HyperLogLog you can estimate the cardinality of very
large data sets using constant memory. The relative error is `1.04 *
sqrt(2^P)`. When creating a new HyperLogLog filter, you provide the
precision P, allowing you to trade memory for accuracy. The union of
two filters is lossless.
In practice this allows you to build efficient analytics systems. For
example, you can create a new filter in each mapper and feed it a
portion of your dataset while the reducers simply union together all
filters they receive. The filter you end up with is exactly the same
filter as if you would sequentially insert all data into a single
filter.
In addition to the base algorithm, we have implemented the bias
correction from HLL++ as the described in the excellent
[paper by Google][]. Bias correction greatly improves the estimates
for lower cardinalities.
## Usage
```erlang
1> hyper:insert(<<"foobar">>, hyper:insert(<<"quux">>, hyper:new(4))).
{hyper,4,
{hyper_binary,{dense,<<0,0,0,0,0,0,0,0,64,0,0,0>>,
[{8,1}],
1,16}}}
2> hyper:card(v(-1)).
2.136502281992361
```
The errors introduced by estimations can be seen in this example:
```erlang
3> random:seed(1,2,3).
undefined
4> Run = fun (P, Card) -> hyper:card(lists:foldl(fun (_, H) -> Int = random:uniform(10000000000000), hyper:insert(<<Int:64/integer>>, H) end, hyper:new(P), lists:seq(1, Card))) end.
#Fun<erl_eval.12.80484245>
5> Run(12, 10000).
9992.846462080579
6> Run(14, 10000).
10055.568563614219
7> Run(16, 10000).
10007.654167606248
```
A filter can be persisted and read later. The serialized struct is formatted for usage with jiffy:
```erlang
8> Filter = hyper:insert(<<"foo">>, hyper:new(4)).
{hyper,4,
{hyper_binary,{dense,<<4,0,0,0,0,0,0,0,0,0,0,0>>,[],0,16}}}
9> Filter =:= hyper:from_json(hyper:to_json(Filter)).
true
```
You can select a different backend. See below for a description of why
you might want to do so. They serialize in exactly the same way, but
can't be mixed in memory.
```erlang
1> Gb = hyper:insert(<<"foo">>, hyper:new(4, hyper_gb)).
{hyper,4,{hyper_gb,{{1,{0,1,nil,nil}},16}}}
2> B = hyper:insert(<<"foo">>, hyper:new(4, hyper_binary)).
{hyper,4,
{hyper_binary,{dense,<<4,0,0,0,0,0,0,0,0,0,0,0>>,[],0,16}}}
3> hyper:to_json(Gb) =:= hyper:to_json(B).
true
4> hyper:union(Gb, B).
** exception error: no case clause matching [{4,hyper_binary},{4,hyper_gb}]
in function hyper:union/1 (src/hyper.erl, line 65)
```
## Is it any good?
Yes. At Game Analytics we use it extensively.
## Backends
Effort has been spent on implementing different backends in the
pursuit of finding the right performance trade-off. The estimate will
always be the same, regardless of backend. A simple performance
comparison can be seen by running `make perf_report`, see below for
the results from an i7-3770 at 3.4 GHz. Fill rate refers to how many
registers has a value other than 0.
* `hyper_binary`: Fixed memory usage (6 bits * 2^P), fastest on insert,
union, cardinality and serialization. Best default choice.
* `hyper_bisect`: Lower memory usage at lower fill rates (3 bytes per
used entry), slightly slower than hyper_binary for
everything. Switches to a structure similar to hyper_binary when it
would save memory. Room for further optimization.
* `hyper_gb`: Fast inserts, very fast unions and reasonable memory
usage at low fill rates. Unreasonable memory usage at high fill
rates.
* `hyper_array`: Cardinality estimation is constant, but slower than
hyper_gb for low fill rates. Uses much more memory at lower fill
rates, but stays constant from 25% and upwards.
* `hyper_binary_rle`: Dud
You can also implement your own backend. In `hyper_test` theres a
bunch of tests run for all backends, including some PropEr tests. The
test suite will ensure your backend gives correct estimates and
correctly encodes/decodes the serialized filters.
```
$ make perf_report
...
module P card fill bytes insert us union ms card ms json ms
hyper_gb 15 1 0.00 64 301.90 0.00 0.10 2.69
hyper_gb 15 100 0.00 3984 1.34 0.05 0.05 6.13
hyper_gb 15 500 0.02 19784 1.53 0.27 0.12 8.67
hyper_gb 15 1000 0.03 39384 1.72 0.53 0.19 8.67
hyper_gb 15 2500 0.07 96384 1.84 1.49 0.40 10.67
hyper_gb 15 5000 0.14 185224 1.99 3.24 0.71 12.22
hyper_gb 15 10000 0.26 344464 2.10 6.80 1.31 15.09
hyper_gb 15 15000 0.37 481664 2.02 10.07 1.91 17.99
hyper_gb 15 25000 0.53 698344 2.08 16.42 2.67 18.71
hyper_gb 15 50000 0.78 1027504 1.96 31.49 4.29 18.87
hyper_gb 15 100000 0.95 1248144 1.78 49.90 5.20 17.92
hyper_gb 15 1000000 1.00 1310744 1.10 108.38 5.72 18.96
hyper_array 15 1 0.00 520 4.10 0.00 4.74 3.83
hyper_array 15 100 0.00 19536 1.56 0.10 4.71 3.99
hyper_array 15 500 0.02 69328 1.44 0.43 4.63 4.46
hyper_array 15 1000 0.03 107760 1.51 0.79 4.68 4.29
hyper_array 15 2500 0.07 188384 1.35 1.79 4.70 5.16
hyper_array 15 5000 0.14 261520 1.31 3.27 4.72 5.33
hyper_array 15 10000 0.26 308072 1.21 5.45 4.99 6.90
hyper_array 15 15000 0.37 320128 1.22 7.34 4.96 7.72
hyper_array 15 25000 0.53 323384 1.21 11.07 5.18 8.42
hyper_array 15 50000 0.78 323560 1.04 17.90 5.51 8.08
hyper_array 15 100000 0.95 323560 1.00 26.93 5.60 7.70
hyper_array 15 1000000 1.00 323560 0.72 51.65 5.77 7.77
hyper_bisect 15 1 0.00 3 6.10 0.00 0.05 7.26
hyper_bisect 15 100 0.00 297 1.62 0.08 0.12 17.42
hyper_bisect 15 500 0.02 1482 1.72 0.42 0.59 21.30
hyper_bisect 15 1000 0.03 2952 1.83 0.95 1.10 23.21
hyper_bisect 15 2500 0.07 7227 1.97 2.63 2.53 25.91
hyper_bisect 15 5000 0.14 13890 2.23 6.50 5.06 28.80
hyper_bisect 15 10000 0.26 25833 2.74 18.21 9.18 31.61
hyper_bisect 15 15000 0.37 32768 3.67 33.29 4.40 4.46
hyper_bisect 15 25000 0.53 32768 3.11 78.77 4.60 5.17
hyper_bisect 15 50000 0.78 32768 2.53 190.66 4.90 4.89
hyper_bisect 15 100000 0.95 32768 2.05 381.11 5.07 4.43
hyper_bisect 15 1000000 1.00 32768 0.85 27.17 5.65 4.59
hyper_binary 15 1 0.00 88 3.40 0.00 6.06 2.23
hyper_binary 15 100 0.00 4048 0.63 0.01 5.91 2.38
hyper_binary 15 500 0.02 20048 0.50 0.01 5.67 2.58
hyper_binary 15 1000 0.02 24576 2.13 0.00 2.72 1.33
hyper_binary 15 2500 0.07 24576 1.54 1.97 2.72 1.95
hyper_binary 15 5000 0.12 24576 1.23 2.40 2.71 2.77
hyper_binary 15 10000 0.26 24576 1.10 11.16 2.95 4.46
hyper_binary 15 15000 0.34 24576 1.11 12.30 2.75 5.48
hyper_binary 15 25000 0.50 24576 0.95 11.97 2.79 5.83
hyper_binary 15 50000 0.76 24576 0.92 13.55 2.81 5.65
hyper_binary 15 100000 0.95 24576 0.79 11.74 2.59 5.16
hyper_binary 15 1000000 1.00 24576 0.55 13.88 2.64 5.11
```
[paper by Google]: http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//pubs/archive/40671.pdf