defmodule Graph.Pathfinding do
@moduledoc """
This module contains implementation code for path finding algorithms used by `libgraph`.
"""
import Graph.Utils, only: [edge_weight: 3]
@type heuristic_fun :: (Graph.vertex() -> integer)
@spec bellman_ford(Graph.t, Graph.vertex) :: [Graph.vertex]
def bellman_ford(g, a), do: Pathfindings.BellmanFord.call(g, a)
@doc """
Finds the shortest path between `a` and `b` as a list of vertices.
Returns `nil` if no path can be found.
The shortest path is calculated here by using a cost function to choose
which path to explore next. The cost function in Dijkstra's algorithm is
`weight(E(A, B))+lower_bound(E(A, B))` where `lower_bound(E(A, B))` is always 0.
"""
@spec dijkstra(Graph.t(), Graph.vertex(), Graph.vertex()) :: [Graph.vertex()] | nil
def dijkstra(%Graph{} = g, a, b) do
a_star(g, a, b, fn _v -> 0 end)
end
@doc """
Finds the shortest path between `a` and `b` as a list of vertices.
Returns `nil` if no path can be found.
This implementation takes a heuristic function which allows you to
calculate the lower bound cost of a given vertex `v`. The algorithm
then uses that lower bound function to determine which path to explore
next in the graph.
The `dijkstra` function is simply `a_star` where the heuristic function
always returns 0, and thus the next vertex is chosen based on the weight of
the edge between it and the current vertex.
"""
@spec a_star(Graph.t(), Graph.vertex(), Graph.vertex(), heuristic_fun) :: [Graph.vertex()] | nil
def a_star(
%Graph{type: :directed, vertices: vs, out_edges: oe, vertex_identifier: vertex_identifier} =
g,
a,
b,
hfun
)
when is_function(hfun, 1) do
with a_id <- vertex_identifier.(a),
b_id <- vertex_identifier.(b),
{:ok, a_out} <- Map.fetch(oe, a_id) do
tree = Graph.new(vertex_identifier: vertex_identifier) |> Graph.add_vertex(a_id)
q = PriorityQueue.new()
q =
a_out
|> Stream.map(fn id -> {id, cost(g, a_id, id, hfun)} end)
|> Enum.reduce(q, fn {id, cost}, q ->
PriorityQueue.push(q, {a_id, id, edge_weight(g, a_id, id)}, cost)
end)
case do_bfs(q, g, b_id, tree, hfun) do
nil ->
nil
path when is_list(path) ->
for id <- path, do: Map.get(vs, id)
end
else
_ ->
nil
end
end
def a_star(
%Graph{type: :undirected, vertices: vs, vertex_identifier: vertex_identifier} = g,
a,
b,
hfun
)
when is_function(hfun, 1) do
a_id = vertex_identifier.(a)
b_id = vertex_identifier.(b)
a_all_edges = all_edges(g, a_id)
tree = Graph.new(vertex_identifier: vertex_identifier) |> Graph.add_vertex(a_id)
q = PriorityQueue.new()
q =
a_all_edges
|> Stream.map(fn id -> {id, cost(g, a_id, id, hfun)} end)
|> Enum.reduce(q, fn {id, cost}, q ->
PriorityQueue.push(q, {a_id, id, edge_weight(g, a_id, id)}, cost)
end)
case do_bfs(q, g, b_id, tree, hfun) do
nil ->
nil
path when is_list(path) ->
for id <- path, do: Map.get(vs, id)
end
end
@doc """
Finds all paths between `a` and `b`, each path as a list of vertices.
Returns `nil` if no path can be found.
"""
@spec all(Graph.t(), Graph.vertex(), Graph.vertex()) :: [Graph.vertex()]
def all(%Graph{vertices: vs, out_edges: oe, vertex_identifier: vertex_identifier} = g, a, b) do
with a_id <- vertex_identifier.(a),
b_id <- vertex_identifier.(b),
{:ok, a_out} <- Map.fetch(oe, a_id) do
case dfs(g, a_out, b_id, [a_id], []) do
[] ->
[]
paths ->
paths
|> Enum.map(fn path -> Enum.map(path, &Map.get(vs, &1)) end)
end
else
_ -> []
end
end
## Private
defp all_edges(%Graph{type: :undirected, out_edges: oe, in_edges: ie}, v_id) do
v_in = Map.get(ie, v_id, MapSet.new())
v_out = Map.get(oe, v_id, MapSet.new())
MapSet.union(v_in, v_out)
end
defp cost(%Graph{vertices: vs} = g, v1_id, v2_id, hfun) do
edge_weight(g, v1_id, v2_id) + hfun.(Map.get(vs, v2_id))
end
defp do_bfs(
q,
%Graph{type: :directed, out_edges: oe, vertex_identifier: vertex_identifier} = g,
target_id,
%Graph{vertices: vs_tree} = tree,
hfun
) do
case PriorityQueue.pop(q) do
{{:value, {v_id, ^target_id, _}}, _q1} ->
v_id_tree = vertex_identifier.(v_id)
construct_path(v_id_tree, tree, [target_id])
{{:value, {v1_id, v2_id, v2_acc_weight}}, q1} ->
v2_id_tree = vertex_identifier.(v2_id)
if Map.has_key?(vs_tree, v2_id_tree) do
do_bfs(q1, g, target_id, tree, hfun)
else
case Map.get(oe, v2_id) do
nil ->
do_bfs(q1, g, target_id, tree, hfun)
v2_out ->
tree =
tree
|> Graph.add_vertex(v2_id)
|> Graph.add_edge(v2_id, v1_id)
q2 =
v2_out
|> Enum.map(fn id -> {id, v2_acc_weight + cost(g, v2_id, id, hfun)} end)
|> Enum.reduce(q1, fn {id, cost}, q ->
PriorityQueue.push(
q,
{v2_id, id, v2_acc_weight + edge_weight(g, v2_id, id)},
cost
)
end)
do_bfs(q2, g, target_id, tree, hfun)
end
end
{:empty, _} ->
nil
end
end
defp do_bfs(
q,
%Graph{type: :undirected, vertex_identifier: vertex_identifier} = g,
target_id,
%Graph{vertices: vs_tree} = tree,
hfun
) do
case PriorityQueue.pop(q) do
{{:value, {v_id, ^target_id, _}}, _q1} ->
v_id_tree = vertex_identifier.(v_id)
construct_path(v_id_tree, tree, [target_id])
{{:value, {v1_id, v2_id, v2_acc_weight}}, q1} ->
v2_id_tree = vertex_identifier.(v2_id)
if Map.has_key?(vs_tree, v2_id_tree) do
do_bfs(q1, g, target_id, tree, hfun)
else
all_edges = all_edges(g, v2_id)
if MapSet.equal?(all_edges, MapSet.new()) do
do_bfs(q1, g, target_id, tree, hfun)
else
tree =
tree
|> Graph.add_vertex(v2_id)
|> Graph.add_edge(v2_id, v1_id)
q2 =
all_edges
|> Enum.map(fn id -> {id, v2_acc_weight + cost(g, v2_id, id, hfun)} end)
|> Enum.reduce(q1, fn {id, cost}, q ->
PriorityQueue.push(
q,
{v2_id, id, v2_acc_weight + edge_weight(g, v2_id, id)},
cost
)
end)
do_bfs(q2, g, target_id, tree, hfun)
end
end
{:empty, _} ->
nil
end
end
defp construct_path(v_id_tree, %Graph{vertices: vs_tree, out_edges: oe_tree} = tree, path) do
v_id_actual = Map.get(vs_tree, v_id_tree)
path = [v_id_actual | path]
case oe_tree |> Map.get(v_id_tree, MapSet.new()) |> MapSet.to_list() do
[] ->
path
[next_id_tree] ->
construct_path(next_id_tree, tree, path)
end
end
defp dfs(%Graph{} = g, neighbors, target_id, path, paths) when is_list(paths) do
{paths, visited} =
if MapSet.member?(neighbors, target_id) do
{[Enum.reverse([target_id | path]) | paths], [target_id | path]}
else
{paths, path}
end
neighbors = MapSet.difference(neighbors, MapSet.new(visited))
do_dfs(g, MapSet.to_list(neighbors), target_id, path, paths)
end
defp do_dfs(_g, [], _target_id, _path, paths) when is_list(paths) do
paths
end
defp do_dfs(%Graph{out_edges: oe} = g, [next_neighbor_id | neighbors], target_id, path, acc) do
case Map.get(oe, next_neighbor_id) do
nil ->
do_dfs(g, neighbors, target_id, path, acc)
next_neighbors ->
case dfs(g, next_neighbors, target_id, [next_neighbor_id | path], acc) do
[] ->
do_dfs(g, neighbors, target_id, path, acc)
paths ->
do_dfs(g, neighbors, target_id, path, paths)
end
end
end
end