# Nexlm
A unified interface (Nexus) for interacting with various Large Language Model (LLM) providers in Elixir.
Nexlm abstracts away provider-specific implementations while offering a clean, consistent API for developers.
## Features
- Single, unified API for multiple LLM providers
- Support for text and multimodal (image) inputs
- Function/tool calling support (all providers)
- Built-in validation and error handling
- Configurable request parameters
- Provider-agnostic message format
- Caching support for reduced costs
- Comprehensive debug logging
## Supported Providers
- OpenAI (GPT-5, GPT-4, GPT-3.5, o1)
- Anthropic (Claude)
- Google (Gemini)
- Groq
## Installation
Add `nexlm` to your list of dependencies in `mix.exs`:
```elixir
def deps do
[
{:nexlm, "~> 0.1.0"}
]
end
```
## Configuration
Configure your API keys in `config/runtime.exs`:
```elixir
import Config
config :nexlm, Nexlm.Providers.OpenAI,
api_key: System.get_env("OPENAI_API_KEY")
config :nexlm, Nexlm.Providers.Anthropic,
api_key: System.get_env("ANTHROPIC_API_KEY")
config :nexlm, Nexlm.Providers.Google,
api_key: System.get_env("GOOGLE_API_KEY")
# Optional: Enable debug logging
config :nexlm, :debug, true
```
## Basic Usage
### Simple Text Completion
```elixir
messages = [
%{"role" => "user", "content" => "What is the capital of France?"}
]
{:ok, response} = Nexlm.complete("anthropic/claude-3-haiku-20240307", messages)
# => {:ok, %{role: "assistant", content: "The capital of France is Paris."}}
```
### With System Message
```elixir
messages = [
%{
"role" => "system",
"content" => "You are a helpful assistant who always responds in JSON format"
},
%{
"role" => "user",
"content" => "List 3 European capitals"
}
]
{:ok, response} = Nexlm.complete("openai/gpt-4", messages, temperature: 0.7)
```
### Image Analysis
```elixir
image_data = File.read!("image.jpg") |> Base.encode64()
messages = [
%{
"role" => "user",
"content" => [
%{"type" => "text", "text" => "What's in this image?"},
%{
"type" => "image",
"mime_type" => "image/jpeg",
"data" => image_data,
"cache" => true # Enable caching for this content
}
]
}
]
{:ok, response} = Nexlm.complete(
"google/gemini-pro-vision",
messages,
max_tokens: 100
)
```
### Tool Usage
(Supported by all providers: OpenAI, Anthropic, Google, and Groq)
```elixir
# Define available tools
tools = [
%{
name: "get_weather",
description: "Get the weather for a location",
parameters: %{
type: "object",
properties: %{
location: %{
type: "string",
description: "The city and state, e.g. San Francisco, CA"
}
},
required: ["location"]
}
}
]
# Initial message
messages = [
%{"role" => "user", "content" => "What's the weather in London?"}
]
# First call - model will request weather data
{:ok, response} = Nexlm.complete(
"anthropic/claude-3-haiku-20240307",
messages,
tools: tools
)
# Handle tool call
[%{id: tool_call_id, name: "get_weather", arguments: %{"location" => "London"}}] =
response.tool_calls
# Add tool response to messages
messages = messages ++ [
response,
%{
"role" => "tool",
"tool_call_id" => tool_call_id,
"content" => "sunny"
}
]
# Final call - model will incorporate tool response
{:ok, response} = Nexlm.complete(
"anthropic/claude-3-haiku-20240307",
messages,
tools: tools
)
# => {:ok, %{role: "assistant", content: "The weather in London is sunny."}}
```
## Error Handling
```elixir
case Nexlm.complete(model, messages, opts) do
{:ok, response} ->
handle_success(response)
{:error, %Nexlm.Error{type: :network_error}} ->
retry_request()
{:error, %Nexlm.Error{type: :provider_error, message: msg, details: details}} ->
status = Map.get(details, :status, "n/a")
Logger.error("Provider error (status #{status}): #{msg}")
handle_provider_error(status)
{:error, %Nexlm.Error{type: :authentication_error}} ->
refresh_credentials()
{:error, error} ->
Logger.error("Unexpected error: #{inspect(error)}")
handle_generic_error()
end
```
`%Nexlm.Error{details: %{status: status}}` captures the provider's HTTP status
code whenever the failure comes directly from the upstream API, making it easy
to decide whether to retry.
## Model Names
Model names must be prefixed with the provider name:
- `"anthropic/claude-3-haiku-20240307"`
- `"openai/gpt-4"`
- `"google/gemini-pro"`
## Configuration Options
Available options for `Nexlm.complete/3`:
- `:temperature` - Float between 0 and 1 (default: 0.0) *Note: Not supported by reasoning models (GPT-5, o1)*
- `:max_tokens` - Maximum tokens in response (default: 4000)
- `:top_p` - Float between 0 and 1 for nucleus sampling
- `:receive_timeout` - Timeout in milliseconds (default: 300_000)
- `:retry_count` - Number of retry attempts (default: 3)
- `:retry_delay` - Delay between retries in milliseconds (default: 1000)
### Reasoning Models (GPT-5, o1)
Reasoning models have special parameter requirements:
- **Temperature**: Not supported - these models use a fixed temperature internally
- **Token limits**: Use `max_completion_tokens` parameter internally (handled automatically)
- **Reasoning tokens**: Models use hidden reasoning tokens that don't appear in output but count toward usage
## Message Format
### Simple Text Message
```elixir
%{
"role" => "user",
"content" => "Hello, world!"
}
```
### Message with Image
```elixir
%{
"role" => "user",
"content" => [
%{"type" => "text", "text" => "What's in this image?"},
%{
"type" => "image",
"mime_type" => "image/jpeg",
"data" => "base64_encoded_data"
}
]
}
```
### System Message
```elixir
%{
"role" => "system",
"content" => "You are a helpful assistant"
}
```
## Contributing
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/my-feature`)
3. Run tests (`mix test`)
4. Commit your changes
5. Push to your branch
6. Create a Pull Request
## Debug Logging
Enable detailed debug logging to see exactly what requests are sent and what responses are received:
```elixir
# Enable in configuration
config :nexlm, :debug, true
```
Or set environment variable:
```bash
export NEXLM_DEBUG=true
```
When enabled, debug logs will show:
- Complete HTTP requests (with sensitive headers redacted)
- Complete HTTP responses
- Message validation and transformation steps
- Request timing information
- Cache control headers (useful for debugging caching issues)
Example debug output:
```
[debug] [Nexlm] Starting request for model: anthropic/claude-3-haiku-20240307
[debug] [Nexlm] Input messages: [%{role: "user", content: [%{type: "image", cache: true, ...}]}]
[debug] [Nexlm] Formatted messages: [%{role: "user", content: [%{type: "image", cache_control: %{type: "ephemeral"}, ...}]}]
[debug] [Nexlm] Provider: anthropic
[debug] [Nexlm] Request: POST https://api.anthropic.com/v1/messages
[debug] [Nexlm] Headers: %{"x-api-key" => "[REDACTED]", "anthropic-beta" => "prompt-caching-2024-07-31"}
[debug] [Nexlm] Response: 200 OK (342ms)
[debug] [Nexlm] Complete request completed in 350ms
```
This is particularly useful for:
- Debugging caching behavior
- Understanding request/response transformations
- Troubleshooting API issues
- Performance monitoring
## Testing Without Live HTTP Calls
Nexlm ships with a dedicated stub provider (`Nexlm.Providers.Stub`) so you can exercise your application without touching real LLM endpoints. Any model starting with `"stub/"` is routed to the in-memory store rather than performing HTTP requests.
### Queue Responses
Use `Nexlm.Providers.Stub.Store` to script the responses you need:
```elixir
alias Nexlm.Providers.Stub.Store
setup do
Store.put("stub/echo", fn _config, %{messages: [%{content: content} | _]} ->
{:ok, %{role: "assistant", content: "stubbed: #{content}"}}
end)
on_exit(&Store.clear/0)
end
test "responds with stubbed data" do
assert {:ok, %{content: "stubbed: ping"}} =
Nexlm.complete("stub/echo", [%{"role" => "user", "content" => "ping"}])
end
```
Each call dequeues the next scripted response, keeping async tests isolated by storing state in the process dictionary.
### Deterministic Sequences
Queue multiple steps for tool flows or retries with `put_sequence/2`:
```elixir
Store.put_sequence("stub/tool-flow", [
{:ok,
%{
role: "assistant",
tool_calls: [%{id: "call-1", name: "lookup", arguments: %{id: 42}}]
}},
{:ok, %{role: "assistant", content: "lookup:42"}}
])
```
### Scoped Helpers
Wrap short-lived stubs with `with_stub/3` to avoid manual cleanup:
```elixir
Store.with_stub("stub/error", {:error, :service_unavailable}, fn ->
{:error, error} = Nexlm.complete("stub/error", messages)
assert error.type == :provider_error
end)
```
Returning `{:error, term}` or raising inside the function automatically produces a `%Nexlm.Error{provider: :stub}` so your application can exercise failure paths without reaching the network.
## Testing
Run the test suite:
```bash
# Run unit tests only
make test
# Run integration tests (requires API keys in .env.local)
make test.integration
```
## License
This project is licensed under the MIT License - see the LICENSE file for details.