defmodule Nx.LinAlg do
@moduledoc """
Nx conveniences for linear algebra.
This module can be used in `defn`.
"""
import Nx.Shared
import Nx.Defn, only: [defn: 2, defnp: 2, deftransformp: 2]
import Nx.Defn.Kernel, only: [keyword!: 2]
alias Nx.Tensor, as: T
@doc """
Returns the adjoint of a given tensor.
If the input tensor is real it transposes it's two inner-most axes.
If the input tensor is complex, it additionally applies `Nx.conjugate/1` to it.
## Examples
iex> Nx.LinAlg.adjoint(Nx.tensor([[1, 2], [3, 4]]))
#Nx.Tensor<
s64[2][2]
[
[1, 3],
[2, 4]
]
>
iex> Nx.LinAlg.adjoint(Nx.tensor([[1, Complex.new(0, 2)], [3, Complex.new(0, -4)]]))
#Nx.Tensor<
c64[2][2]
[
[1.0+0.0i, 3.0+0.0i],
[0.0-2.0i, 0.0+4.0i]
]
>
"""
defn adjoint(t) do
tensor = Nx.to_tensor(t)
opts = adjoint_opts(tensor.shape)
case Nx.type(tensor) do
{:c, _} ->
tensor |> Nx.transpose(opts) |> Nx.conjugate()
_ ->
Nx.transpose(tensor, opts)
end
end
deftransformp adjoint_opts(shape) do
rank = tuple_size(shape)
if rank > 2 do
axes = Enum.concat(0..(rank - 3), [rank - 1, rank - 2])
[axes: axes]
else
[]
end
end
@doc """
Performs a Cholesky decomposition of a batch of square matrices.
The matrices must be positive-definite and either Hermitian
if complex or symmetric if real. An error is raised by the
default backend if those conditions are not met. Other
backends may emit undefined behaviour.
## Examples
iex> Nx.LinAlg.cholesky(Nx.tensor([[20.0, 17.6], [17.6, 16.0]]))
#Nx.Tensor<
f32[2][2]
[
[4.4721360206604, 0.0],
[3.9354796409606934, 0.7155413031578064]
]
>
iex> Nx.LinAlg.cholesky(Nx.tensor([[[2.0, 3.0], [3.0, 5.0]], [[1.0, 0.0], [0.0, 1.0]]]))
#Nx.Tensor<
f32[2][2][2]
[
[
[1.4142135381698608, 0.0],
[2.1213202476501465, 0.7071067690849304]
],
[
[1.0, 0.0],
[0.0, 1.0]
]
]
>
iex> t = Nx.tensor([
...> [6.0, 3.0, 4.0, 8.0],
...> [3.0, 6.0, 5.0, 1.0],
...> [4.0, 5.0, 10.0, 7.0],
...> [8.0, 1.0, 7.0, 25.0]
...> ])
iex> Nx.LinAlg.cholesky(t)
#Nx.Tensor<
f32[4][4]
[
[2.4494898319244385, 0.0, 0.0, 0.0],
[1.2247449159622192, 2.1213202476501465, 0.0, 0.0],
[1.632993221282959, 1.4142135381698608, 2.309401035308838, 0.0],
[3.265986442565918, -1.4142135381698608, 1.5877132415771484, 3.132491111755371]
]
>
iex> Nx.LinAlg.cholesky(Nx.tensor([[1.0, Complex.new(0, -2)], [Complex.new(0, 2), 5.0]]))
#Nx.Tensor<
c64[2][2]
[
[1.0+0.0i, 0.0+0.0i],
[0.0+2.0i, 1.0+0.0i]
]
>
iex> t = Nx.tensor([[[2.0, 3.0], [3.0, 5.0]], [[1.0, 0.0], [0.0, 1.0]]]) |> Nx.vectorize(x: 2)
iex> Nx.LinAlg.cholesky(t)
#Nx.Tensor<
vectorized[x: 2]
f32[2][2]
[
[
[1.4142135381698608, 0.0],
[2.1213202476501465, 0.7071067690849304]
],
[
[1.0, 0.0],
[0.0, 1.0]
]
]
>
## Error cases
iex> Nx.LinAlg.cholesky(Nx.tensor([[1.0, 2.0], [3.0, 4.0]]))
** (ArgumentError) matrix must be hermitian, a matrix is hermitian iff X = adjoint(X)
"""
def cholesky(tensor) do
apply_vectorized(tensor, fn tensor ->
%T{type: type, shape: shape, names: names} = tensor
output_type = Nx.Type.to_floating(type)
{output_shape, output_names} = Nx.Shape.cholesky(shape, names)
out = %{tensor | type: output_type, shape: output_shape, names: output_names}
impl!(tensor).cholesky(out, tensor)
end)
end
@doc """
Calculates the p-norm of a tensor.
For the 0-norm, the norm is the number of non-zero elements in the tensor.
## Options
* `:axes` - defines the axes upon which the norm will be calculated.
Applies only on 2-norm for 2-D tensors. Default: `nil`.
* `:keep_axes` - whether the calculation axes should be kept with
length 1. Defaults to `false`
* `:ord` - defines which norm will be calculated according to the table below. Default: `nil`.
| ord | 2-D | 1-D |
| ------------ | -------------------------------| --------------------------------- |
| `nil` | Frobenius norm | 2-norm |
| `:nuclear` | Nuclear norm | - |
| `:frobenius` | Frobenius norm | - |
| `:inf` | `max(sum(abs(x), axes: [1]))` | `max(abs(x))` |
| `:neg_inf` | `min(sum(abs(x), axes: [1]))` | `min(abs(x))` |
| 0 | - | Number of non-zero elements |
| 1 | `max(sum(abs(x), axes: [0]))` | as below |
| -1 | `min(sum(abs(x), axes: [0]))` | as below |
| 2 | 2-norm | as below |
| -2 | smallest singular value | as below |
| other | - | pow(sum(pow(abs(x), p)), 1/p) |
## Examples
### Vector norms
iex> Nx.LinAlg.norm(Nx.tensor([3, 4]))
#Nx.Tensor<
f32
5.0
>
iex> Nx.LinAlg.norm(Nx.tensor([3, 4]), ord: 1)
#Nx.Tensor<
f32
7.0
>
iex> Nx.LinAlg.norm(Nx.tensor([3, -4]), ord: :inf)
#Nx.Tensor<
f32
4.0
>
iex> Nx.LinAlg.norm(Nx.tensor([3, -4]), ord: :neg_inf)
#Nx.Tensor<
f32
3.0
>
iex> Nx.LinAlg.norm(Nx.tensor([3, -4, 0, 0]), ord: 0)
#Nx.Tensor<
f32
2.0
>
### Matrix norms
iex> Nx.LinAlg.norm(Nx.tensor([[3, -1], [2, -4]]), ord: -1)
#Nx.Tensor<
f32
5.0
>
iex> Nx.LinAlg.norm(Nx.tensor([[3, -2], [2, -4]]), ord: 1)
#Nx.Tensor<
f32
6.0
>
iex> Nx.LinAlg.norm(Nx.tensor([[3, -2], [2, -4]]), ord: :neg_inf)
#Nx.Tensor<
f32
5.0
>
iex> Nx.LinAlg.norm(Nx.tensor([[3, -2], [2, -4]]), ord: :inf)
#Nx.Tensor<
f32
6.0
>
iex> Nx.LinAlg.norm(Nx.tensor([[3, 0], [0, -4]]), ord: :frobenius)
#Nx.Tensor<
f32
5.0
>
iex> Nx.LinAlg.norm(Nx.tensor([[1, 0, 0], [0, -4, 0], [0, 0, 9]]), ord: :nuclear)
#Nx.Tensor<
f32
14.0
>
iex> Nx.LinAlg.norm(Nx.tensor([[1, 0, 0], [0, -4, 0], [0, 0, 9]]), ord: -2)
#Nx.Tensor<
f32
1.0
>
iex> Nx.LinAlg.norm(Nx.tensor([[3, 0], [0, -4]]))
#Nx.Tensor<
f32
5.0
>
iex> Nx.LinAlg.norm(Nx.tensor([[3, 4], [0, -4]]), axes: [1])
#Nx.Tensor<
f32[2]
[5.0, 4.0]
>
iex> Nx.LinAlg.norm(Nx.tensor([[Complex.new(0, 3), 4], [4, 0]]), axes: [0])
#Nx.Tensor<
f32[2]
[5.0, 4.0]
>
iex> Nx.LinAlg.norm(Nx.tensor([[Complex.new(0, 3), 0], [4, 0]]), ord: :neg_inf)
#Nx.Tensor<
f32
3.0
>
iex> Nx.LinAlg.norm(Nx.tensor([[0, 0], [0, 0]]))
#Nx.Tensor<
f32
0.0
>
## Error cases
iex> Nx.LinAlg.norm(Nx.tensor([3, 4]), ord: :frobenius)
** (ArgumentError) expected a 2-D tensor for ord: :frobenius, got a 1-D tensor
"""
@doc from_backend: false
defn norm(tensor, opts \\ []) do
opts = keyword!(opts, [:ord, :axes, :keep_axes])
norm_transform(tensor, opts)
end
deftransformp norm_transform(t, opts) do
rank = Nx.rank(t)
unless rank == 1 or rank == 2 do
raise ArgumentError, "expected 1-D or 2-D tensor, got tensor with shape #{inspect(t.shape)}"
end
axes_opts = Keyword.take(opts, [:axes, :keep_axes])
case opts[:ord] do
nil when rank == 1 -> norm_integer(t, 2, axes_opts)
nil when rank == 2 -> norm_integer(t, 2, axes_opts)
:frobenius -> norm_frobenius(t, axes_opts)
:nuclear when rank == 2 -> norm_nuclear(t)
:nuclear -> raise ArgumentError, "nuclear norm not supported for rank != 2"
ord when ord in [:inf, :neg_inf] -> norm_inf(t, ord, axes_opts)
ord when is_integer(ord) -> norm_integer(t, ord, axes_opts)
ord -> raise ArgumentError, "unknown ord #{inspect(ord)}"
end
end
defp norm_frobenius(%{shape: {_}}, _opts),
do: raise(ArgumentError, "expected a 2-D tensor for ord: :frobenius, got a 1-D tensor")
defp norm_frobenius(%{shape: {_, _}} = t, opts), do: norm_integer(t, 2, opts)
defp norm_nuclear(%{shape: {_, _}} = t) do
{_u, s, _v} = svd(t)
Nx.sum(s)
end
defp norm_inf(%{shape: shape, type: type} = t, ord, opts) when ord in [:inf, :neg_inf] do
output_type = Nx.Type.to_real(type)
aggregate_axes = if tuple_size(shape) == 2, do: &Nx.sum(&1, axes: [1]), else: & &1
reduce =
if ord == :inf,
do: &Nx.reduce_max(&1, opts),
else: &Nx.reduce_min(&1, opts)
t
|> Nx.abs()
|> aggregate_axes.()
|> reduce.()
|> Nx.as_type(output_type)
end
defp norm_integer(%{shape: {_}, type: type} = t, 0, opts) do
output_type = Nx.Type.to_real(type)
t
|> Nx.not_equal(0)
|> Nx.sum(opts)
|> Nx.as_type(output_type)
end
defp norm_integer(%{shape: {_, _}, type: type} = t, ord, opts) when ord in [1, -1] do
output_type = Nx.Type.to_real(type)
function = if ord == 1, do: &Nx.reduce_max(&1, opts), else: &Nx.reduce_min(&1, opts)
t
|> Nx.abs()
|> Nx.sum(axes: [0])
|> function.()
|> Nx.as_type(output_type)
end
defp norm_integer(%{shape: {_, _}}, ord, _opts) when ord not in [-2, -1, 1, 2] do
raise ArgumentError, "invalid :ord for 2-D tensor, got: #{inspect(ord)}"
end
defp norm_integer(%{shape: {_, _}} = t, -2, opts) do
{_u, s, _v} = Nx.LinAlg.svd(t)
Nx.reduce_min(s, opts)
end
defp norm_integer(%{type: type} = t, ord, opts) when is_integer(ord) do
output_type = Nx.Type.to_real(type)
inv_ord = Nx.tensor(1 / ord, type: output_type)
# We extract this result to a variable because it's used both for
# getting the normalization coefficient and for the main pipe chain
abs_t = Nx.abs(t)
# This coefficient is introduced for better numerical stability
# The idea is that by dividing the tensor by it, large values of
# tensor entries and large values of p are reduced, which in turn
# avoids numerical overflow.
numerical_stability_coefficient = Nx.reduce_max(abs_t, opts)
# This code prevents from division by zero.
numerical_stability_coefficient =
Nx.select(
Nx.greater(numerical_stability_coefficient, 0),
numerical_stability_coefficient,
1
)
abs_t
|> Nx.divide(numerical_stability_coefficient)
|> Nx.pow(ord)
|> Nx.sum(opts)
|> Nx.pow(inv_ord)
|> Nx.multiply(numerical_stability_coefficient)
end
@doc """
Solve the equation `a x = b` for x, assuming `a` is a batch of triangular matrices.
Can also solve `x a = b` for x. See the `:left_side` option below.
`b` must either be a batch of square matrices with the same dimensions as `a` or a batch of 1-D tensors
with as many rows as `a`. Batch dimensions of `a` and `b` must be the same.
## Options
The following options are defined in order of precedence
* `:transform_a` - Defines `op(a)`, depending on its value. Can be one of:
* `:none` -> `op(a) = a`
* `:transpose` -> `op(a) = transpose(a)`
Defaults to `:none`
* `:lower` - When `true`, defines the `a` matrix as lower triangular. If false, a is upper triangular.
Defaults to `true`
* `:left_side` - When `true`, solves the system as `op(A).X = B`. Otherwise, solves `X.op(A) = B`. Defaults to `true`.
## Examples
iex> a = Nx.tensor([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]])
iex> Nx.LinAlg.triangular_solve(a, Nx.tensor([4, 2, 4, 2]))
#Nx.Tensor<
f32[4]
[1.3333333730697632, -0.6666666865348816, 2.6666667461395264, -1.3333333730697632]
>
iex> a = Nx.tensor([[1, 0, 0], [1, 1, 0], [1, 1, 1]], type: :f64)
iex> Nx.LinAlg.triangular_solve(a, Nx.tensor([1, 2, 1]))
#Nx.Tensor<
f64[3]
[1.0, 1.0, -1.0]
>
iex> a = Nx.tensor([[1, 0, 0], [1, 1, 0], [0, 1, 1]])
iex> b = Nx.tensor([[1, 2, 3], [2, 2, 4], [2, 0, 1]])
iex> Nx.LinAlg.triangular_solve(a, b)
#Nx.Tensor<
f32[3][3]
[
[1.0, 2.0, 3.0],
[1.0, 0.0, 1.0],
[1.0, 0.0, 0.0]
]
>
iex> a = Nx.tensor([[1, 1, 1, 1], [0, 1, 0, 1], [0, 0, 1, 2], [0, 0, 0, 3]])
iex> Nx.LinAlg.triangular_solve(a, Nx.tensor([2, 4, 2, 4]), lower: false)
#Nx.Tensor<
f32[4]
[-1.3333333730697632, 2.6666667461395264, -0.6666666865348816, 1.3333333730697632]
>
iex> a = Nx.tensor([[1, 0, 0], [1, 1, 0], [1, 2, 1]])
iex> b = Nx.tensor([[0, 2, 1], [1, 1, 0], [3, 3, 1]])
iex> Nx.LinAlg.triangular_solve(a, b, left_side: false)
#Nx.Tensor<
f32[3][3]
[
[-1.0, 0.0, 1.0],
[0.0, 1.0, 0.0],
[1.0, 1.0, 1.0]
]
>
iex> a = Nx.tensor([[1, 1, 1], [0, 1, 1], [0, 0, 1]], type: :f64)
iex> Nx.LinAlg.triangular_solve(a, Nx.tensor([1, 2, 1]), transform_a: :transpose, lower: false)
#Nx.Tensor<
f64[3]
[1.0, 1.0, -1.0]
>
iex> a = Nx.tensor([[1, 0, 0], [1, 1, 0], [1, 1, 1]], type: :f64)
iex> Nx.LinAlg.triangular_solve(a, Nx.tensor([1, 2, 1]), transform_a: :none)
#Nx.Tensor<
f64[3]
[1.0, 1.0, -1.0]
>
iex> a = Nx.tensor([[1, 0, 0], [1, 1, 0], [1, 2, 1]])
iex> b = Nx.tensor([[0, 1, 3], [2, 1, 3]])
iex> Nx.LinAlg.triangular_solve(a, b, left_side: false)
#Nx.Tensor<
f32[2][3]
[
[2.0, -5.0, 3.0],
[4.0, -5.0, 3.0]
]
>
iex> a = Nx.tensor([[1, 0, 0], [1, 1, 0], [1, 2, 1]])
iex> b = Nx.tensor([[0, 2], [3, 0], [0, 0]])
iex> Nx.LinAlg.triangular_solve(a, b, left_side: true)
#Nx.Tensor<
f32[3][2]
[
[0.0, 2.0],
[3.0, -2.0],
[-6.0, 2.0]
]
>
iex> a = Nx.tensor([
...> [1, 0, 0],
...> [1, Complex.new(0, 1), 0],
...> [Complex.new(0, 1), 1, 1]
...>])
iex> b = Nx.tensor([1, -1, Complex.new(3, 3)])
iex> Nx.LinAlg.triangular_solve(a, b)
#Nx.Tensor<
c64[3]
[1.0+0.0i, 0.0+2.0i, 3.0+0.0i]
>
iex> a = Nx.tensor([[[1, 0], [2, 3]], [[4, 0], [5, 6]]])
iex> b = Nx.tensor([[2, -1], [3, 7]])
iex> Nx.LinAlg.triangular_solve(a, b)
#Nx.Tensor<
f32[2][2]
[
[2.0, -1.6666666269302368],
[0.75, 0.5416666865348816]
]
>
iex> a = Nx.tensor([[[1, 1], [0, 1]], [[2, 0], [0, 2]]]) |> Nx.vectorize(x: 2)
iex> b = Nx.tensor([[[2, 1], [5, -1]]]) |> Nx.vectorize(x: 1, y: 2)
iex> Nx.LinAlg.triangular_solve(a, b, lower: false)
#Nx.Tensor<
vectorized[x: 2][y: 2]
f32[2]
[
[
[1.0, 1.0],
[6.0, -1.0]
],
[
[1.0, 0.5],
[2.5, -0.5]
]
]
>
## Error cases
iex> Nx.LinAlg.triangular_solve(Nx.tensor([[3, 0, 0, 0], [2, 1, 0, 0]]), Nx.tensor([4, 2, 4, 2]))
** (ArgumentError) triangular_solve/3 expected a square matrix or a batch of square matrices, got tensor with shape: {2, 4}
iex> Nx.LinAlg.triangular_solve(Nx.tensor([[3, 0, 0, 0], [2, 1, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]]), Nx.tensor([4]))
** (ArgumentError) incompatible dimensions for a and b on triangular solve
iex> Nx.LinAlg.triangular_solve(Nx.tensor([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1]]), Nx.tensor([4, 2, 4, 2]))
** (ArgumentError) can't solve for singular matrix
iex> a = Nx.tensor([[1, 0, 0], [1, 1, 0], [1, 1, 1]], type: :f64)
iex> Nx.LinAlg.triangular_solve(a, Nx.tensor([1, 2, 1]), transform_a: :conjugate)
** (ArgumentError) complex numbers not supported yet
iex> a = Nx.tensor([[1, 0, 0], [1, 1, 0], [1, 1, 1]], type: :f64)
iex> Nx.LinAlg.triangular_solve(a, Nx.tensor([1, 2, 1]), transform_a: :other)
** (ArgumentError) invalid value for :transform_a option, expected :none, :transpose, or :conjugate, got: :other
"""
def triangular_solve(a, b, opts \\ []) do
opts = keyword!(opts, lower: true, left_side: true, transform_a: :none)
case opts[:transform_a] do
t when t in [:none, :transpose] ->
nil
:conjugate ->
raise ArgumentError, "complex numbers not supported yet"
t ->
raise ArgumentError,
"invalid value for :transform_a option, expected :none, :transpose, or :conjugate, " <>
"got: #{inspect(t)}"
end
[%T{vectorized_axes: vectorized_axes, shape: a_shape} = a, %T{shape: b_shape} = b] =
Nx.broadcast_vectors([a, b])
:ok = Nx.Shape.triangular_solve(a_shape, b_shape, opts[:left_side])
output_type = binary_type(a, b) |> Nx.Type.to_floating()
a = Nx.devectorize(a)
b = Nx.devectorize(b)
result = impl!(a, b).triangular_solve(%{b | type: output_type}, a, b, opts)
Nx.vectorize(result, vectorized_axes)
end
@doc """
Solves the system `AX = B`.
`A` must have shape `{..., n, n}` and `B` must have shape `{..., n, m}` or `{..., n}`.
`X` has the same shape as `B`.
## Examples
iex> a = Nx.tensor([[1, 3, 2, 1], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]])
iex> Nx.LinAlg.solve(a, Nx.tensor([-3, 0, 4, -2])) |> Nx.round()
#Nx.Tensor<
f32[4]
[1.0, -2.0, 3.0, -4.0]
>
iex> a = Nx.tensor([[1, 0, 1], [1, 1, 0], [1, 1, 1]], type: :f64)
iex> Nx.LinAlg.solve(a, Nx.tensor([0, 2, 1])) |> Nx.round()
#Nx.Tensor<
f64[3]
[1.0, 1.0, -1.0]
>
iex> a = Nx.tensor([[1, 0, 1], [1, 1, 0], [0, 1, 1]])
iex> b = Nx.tensor([[2, 2, 3], [2, 2, 4], [2, 0, 1]])
iex> Nx.LinAlg.solve(a, b) |> Nx.round()
#Nx.Tensor<
f32[3][3]
[
[1.0, 2.0, 3.0],
[1.0, 0.0, 1.0],
[1.0, 0.0, 0.0]
]
>
iex> a = Nx.tensor([[[14, 10], [9, 9]], [[4, 11], [2, 3]]])
iex> b = Nx.tensor([[[2, 4], [3, 2]], [[1, 5], [-3, -1]]])
iex> Nx.LinAlg.solve(a, b) |> Nx.round()
#Nx.Tensor<
f32[2][2][2]
[
[
[0.0, 0.0],
[1.0, 0.0]
],
[
[-4.0, -3.0],
[1.0, 1.0]
]
]
>
iex> a = Nx.tensor([[[1, 1], [0, 1]], [[2, 0], [0, 2]]]) |> Nx.vectorize(x: 2)
iex> b = Nx.tensor([[[2, 1], [5, -1]]]) |> Nx.vectorize(x: 1, y: 2)
iex> Nx.LinAlg.solve(a, b)
#Nx.Tensor<
vectorized[x: 2][y: 2]
f32[2]
[
[
[1.0, 1.0],
[6.0, -1.0]
],
[
[1.0, 0.5],
[2.5, -0.5]
]
]
>
If the axes are named, their names are not preserved in the output:
iex> a = Nx.tensor([[1, 0, 1], [1, 1, 0], [1, 1, 1]], names: [:x, :y])
iex> Nx.LinAlg.solve(a, Nx.tensor([0, 2, 1], names: [:z])) |> Nx.round()
#Nx.Tensor<
f32[3]
[1.0, 1.0, -1.0]
>
## Error cases
iex> Nx.LinAlg.solve(Nx.tensor([[1, 0], [0, 1]]), Nx.tensor([4, 2, 4, 2]))
** (ArgumentError) `b` tensor has incompatible dimensions, expected {2, 2} or {2}, got: {4}
iex> Nx.LinAlg.solve(Nx.tensor([[3, 0, 0, 0], [2, 1, 0, 0], [1, 1, 1, 1]]), Nx.tensor([4]))
** (ArgumentError) `a` tensor has incompatible dimensions, expected a square matrix or a batch of square matrices, got: {3, 4}
"""
# IMPORTANT: This function cannot be a defn because
# optional needs to work on the actual backend.
@doc from_backend: false
def solve(a, b) do
[%T{vectorized_axes: vectorized_axes} = a, b] = Nx.broadcast_vectors([a, b])
a = Nx.devectorize(a)
b = Nx.devectorize(b)
%T{shape: a_shape, type: a_type} = a
%T{shape: b_shape, type: b_type} = b
output_shape = Nx.Shape.solve(a_shape, b_shape)
output_type = a_type |> Nx.Type.merge(b_type) |> Nx.Type.to_floating()
output = Nx.template(output_shape, output_type)
result =
Nx.Shared.optional(:solve, [a, b], output, fn a, b ->
# Since we have triangular solve, which accepts upper
# triangular matrices with the `lower: false` option,
# we can solve a system as follows:
# A.X = B -> QR.X = B -> R.X = adjoint(Q).B
{q, r} = Nx.LinAlg.qr(a)
q_rank = Nx.rank(q)
batches = Enum.to_list(0..(q_rank - 3)//1)
qb = Nx.dot(adjoint(q), [q_rank - 1], batches, b, [q_rank - 2], batches)
triangular_solve(r, qb, lower: false)
end)
Nx.vectorize(result, vectorized_axes)
end
@doc """
Inverts a batch of square matrices.
For non-square matrices, use `pinv/2` for pseudo-inverse calculations.
## Examples
iex> a = Nx.tensor([[1, 2, 1, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0 , 0, 0, 1]])
iex> a_inv = Nx.LinAlg.invert(a)
#Nx.Tensor<
f32[4][4]
[
[1.0, -2.0, -1.0, 2.0],
[0.0, 1.0, 0.0, -1.0],
[0.0, 0.0, 1.0, -1.0],
[0.0, 0.0, 0.0, 1.0]
]
>
iex> Nx.dot(a, a_inv)
#Nx.Tensor<
f32[4][4]
[
[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0]
]
>
iex> Nx.dot(a_inv, a)
#Nx.Tensor<
f32[4][4]
[
[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0]
]
>
iex> a = Nx.tensor([[[1, 2], [0, 1]], [[1, 1], [0, 1]]])
iex> a_inv = Nx.LinAlg.invert(a)
#Nx.Tensor<
f32[2][2][2]
[
[
[1.0, -2.0],
[0.0, 1.0]
],
[
[1.0, -1.0],
[0.0, 1.0]
]
]
>
iex> Nx.dot(a, [2], [0], a_inv, [1], [0])
#Nx.Tensor<
f32[2][2][2]
[
[
[1.0, 0.0],
[0.0, 1.0]
],
[
[1.0, 0.0],
[0.0, 1.0]
]
]
>
iex> Nx.dot(a_inv, [2], [0], a, [1], [0])
#Nx.Tensor<
f32[2][2][2]
[
[
[1.0, 0.0],
[0.0, 1.0]
],
[
[1.0, 0.0],
[0.0, 1.0]
]
]
>
If a singular matrix is passed, the result will silently fail.
iex> Nx.LinAlg.invert(Nx.tensor([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1]]))
#Nx.Tensor<
f32[4][4]
[
[NaN, NaN, NaN, NaN],
[NaN, NaN, NaN, NaN],
[NaN, NaN, NaN, NaN],
[NaN, NaN, NaN, NaN]
]
>
## Error cases
iex> Nx.LinAlg.invert(Nx.tensor([[3, 0, 0, 0], [2, 1, 0, 0]]))
** (ArgumentError) invert/1 expects a square matrix or a batch of square matrices, got tensor with shape: {2, 4}
"""
@doc from_backend: false
defn invert(tensor) do
ans =
tensor
|> invert_shape()
|> invert_tensor()
custom_grad(ans, [tensor], fn g ->
# As defined in https://juliadiff.org/ChainRulesCore.jl/stable/maths/arrays.html#Matrix-inversion-2
ans_h = adjoint(ans)
[ans_h |> Nx.negate() |> Nx.dot(g) |> Nx.dot(ans_h)]
end)
end
defnp invert_tensor(tensor) do
m = Nx.axis_size(tensor, -2)
n = Nx.axis_size(tensor, -1)
vectorized_axes = tensor.vectorized_axes
input_shape = Nx.shape(tensor)
# proof of equivalence:
# norm_t = t / det
# norm_t ** -1 = (t / det) ** -1 = t ** -1 * det
# t ** -1 = norm_t ** -1 / det
tensor =
case input_shape do
{_, _} ->
# this avoids the need for creating a new
# vectorized axis to collapse batched axes,
# because we have no batch axes
tensor
_ ->
Nx.revectorize(tensor, [collapsed_batch: :auto], target_shape: {m, n})
end
det = Nx.LinAlg.determinant(tensor)
type = Nx.Type.to_real(Nx.type(tensor))
eps = Nx.Constants.smallest_positive_normal(type) * 1.0e3
inverse =
if Nx.abs(det) <= eps do
Nx.tensor(:nan)
else
# matrix is possibly invertible but ill-conditioned
# we normalize it by the determinant
scaling_matrix = Nx.reduce_max(Nx.abs(tensor), axes: [1], keep_axes: true)
# don't rescale for 0-norm rows
scaling_matrix = 1 / Nx.select(scaling_matrix == 0, 1, scaling_matrix)
# We can think of the implementation as a system of equations.
# Since we're scaling the left side by scaling_matrix[i] for each row i,
# we need to also scale the right side.
# This is achieved by scaling each row of an identity matrix, which is,
# in fact, the same as putting the scaling values in the diagonal of the
# right-side matrix.
normalized_tensor = scaling_matrix * tensor
Nx.LinAlg.solve(
normalized_tensor,
Nx.make_diagonal(Nx.squeeze(scaling_matrix, axes: [1]))
)
end
Nx.revectorize(inverse, vectorized_axes, target_shape: input_shape)
end
deftransformp invert_shape(tensor) do
shape = Nx.shape(tensor)
shape
|> Tuple.to_list()
|> Enum.split(-2)
|> case do
{_, [n, n]} ->
tensor
_ ->
raise ArgumentError,
"invert/1 expects a square matrix or a batch of square matrices, got tensor with shape: #{inspect(shape)}"
end
end
@doc """
Calculates the QR decomposition of a tensor with shape `{..., M, N}`.
## Options
* `:mode` - Can be one of `:reduced`, `:complete`. Defaults to `:reduced`
For the following, `K = min(M, N)`
* `:reduced` - returns `q` and `r` with shapes `{..., M, K}` and `{..., K, N}`
* `:complete` - returns `q` and `r` with shapes `{..., M, M}` and `{..., M, N}`
* `:eps` - Rounding error threshold that can be applied during the triangularization. Defaults to `1.0e-10`
## Examples
iex> {q, r} = Nx.LinAlg.qr(Nx.tensor([[-3, 2, 1], [0, 1, 1], [0, 0, -1]]))
iex> q
#Nx.Tensor<
f32[3][3]
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]
]
>
iex> r
#Nx.Tensor<
f32[3][3]
[
[-3.0, 2.0, 1.0],
[0.0, 1.0, 1.0],
[0.0, 0.0, -1.0]
]
>
iex> t = Nx.tensor([[3, 2, 1], [0, 1, 1], [0, 0, 1]])
iex> {q, r} = Nx.LinAlg.qr(t)
iex> q
#Nx.Tensor<
f32[3][3]
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]
]
>
iex> r
#Nx.Tensor<
f32[3][3]
[
[3.0, 2.0, 1.0],
[0.0, 1.0, 1.0],
[0.0, 0.0, 1.0]
]
>
iex> {qs, rs} = Nx.LinAlg.qr(Nx.tensor([[[-3, 2, 1], [0, 1, 1], [0, 0, -1]],[[3, 2, 1], [0, 1, 1], [0, 0, 1]]]))
iex> qs
#Nx.Tensor<
f32[2][3][3]
[
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]
],
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]
]
]
>
iex> rs
#Nx.Tensor<
f32[2][3][3]
[
[
[-3.0, 2.0, 1.0],
[0.0, 1.0, 1.0],
[0.0, 0.0, -1.0]
],
[
[3.0, 2.0, 1.0],
[0.0, 1.0, 1.0],
[0.0, 0.0, 1.0]
]
]
>
iex> t = Nx.tensor([[3, 2, 1], [0, 1, 1], [0, 0, 1], [0, 0, 1]], type: :f32)
iex> {q, r} = Nx.LinAlg.qr(t, mode: :reduced)
iex> q
#Nx.Tensor<
f32[4][3]
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 0.7071067690849304],
[0.0, 0.0, 0.7071067690849304]
]
>
iex> r
#Nx.Tensor<
f32[3][3]
[
[3.0, 2.0, 1.0],
[0.0, 1.0, 1.0],
[0.0, 0.0, 1.4142135381698608]
]
>
iex> t = Nx.tensor([[3, 2, 1], [0, 1, 1], [0, 0, 1], [0, 0, 0]], type: :f32)
iex> {q, r} = Nx.LinAlg.qr(t, mode: :complete)
iex> q
#Nx.Tensor<
f32[4][4]
[
[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0]
]
>
iex> r
#Nx.Tensor<
f32[4][3]
[
[3.0, 2.0, 1.0],
[0.0, 1.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 0.0]
]
>
iex> t = Nx.tensor([[[-3, 2, 1], [0, 1, 1], [0, 0, -1]],[[3, 2, 1], [0, 1, 1], [0, 0, 1]]]) |> Nx.vectorize(x: 2)
iex> {qs, rs} = Nx.LinAlg.qr(t)
iex> qs
#Nx.Tensor<
vectorized[x: 2]
f32[3][3]
[
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]
],
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]
]
]
>
iex> rs
#Nx.Tensor<
vectorized[x: 2]
f32[3][3]
[
[
[-3.0, 2.0, 1.0],
[0.0, 1.0, 1.0],
[0.0, 0.0, -1.0]
],
[
[3.0, 2.0, 1.0],
[0.0, 1.0, 1.0],
[0.0, 0.0, 1.0]
]
]
>
## Error cases
iex> Nx.LinAlg.qr(Nx.tensor([1, 2, 3, 4, 5]))
** (ArgumentError) tensor must have at least rank 2, got rank 1 with shape {5}
iex> t = Nx.tensor([[-3, 2, 1], [0, 1, 1], [0, 0, -1]])
iex> Nx.LinAlg.qr(t, mode: :error_test)
** (ArgumentError) invalid :mode received. Expected one of [:reduced, :complete], received: :error_test
"""
def qr(tensor, opts \\ []) do
apply_vectorized(tensor, fn tensor ->
opts = keyword!(opts, mode: :reduced, eps: 1.0e-10)
%T{type: type, shape: shape} = tensor
mode = opts[:mode]
valid_modes = [:reduced, :complete]
unless mode in valid_modes do
raise ArgumentError,
"invalid :mode received. Expected one of #{inspect(valid_modes)}, received: #{inspect(mode)}"
end
output_type = Nx.Type.to_floating(type)
{q_shape, r_shape} = Nx.Shape.qr(shape, opts)
impl!(tensor).qr(
{%{
tensor
| type: output_type,
shape: q_shape,
names: List.duplicate(nil, tuple_size(q_shape))
},
%{
tensor
| type: output_type,
shape: r_shape,
names: List.duplicate(nil, tuple_size(r_shape))
}},
tensor,
opts
)
end)
end
@doc """
Calculates the Moore-Penrose inverse, or the pseudoinverse, of a matrix.
## Options
* `:eps` - Rounding error threshold used to assume values as 0. Defaults to `1.0e-10`
## Examples
Scalar case:
iex> Nx.LinAlg.pinv(2)
#Nx.Tensor<
f32
0.5
>
iex> Nx.LinAlg.pinv(0)
#Nx.Tensor<
f32
0.0
>
Vector case:
iex> Nx.LinAlg.pinv(Nx.tensor([0, 1, 2]))
#Nx.Tensor<
f32[3]
[0.0, 0.20000000298023224, 0.4000000059604645]
>
iex> Nx.LinAlg.pinv(Nx.tensor([0, 0, 0]))
#Nx.Tensor<
f32[3]
[0.0, 0.0, 0.0]
>
Matrix case:
iex> Nx.LinAlg.pinv(Nx.tensor([[1, 1], [3, 4]]))
#Nx.Tensor<
f32[2][2]
[
[3.9924843311309814, -1.0052789449691772],
[-3.005120038986206, 1.0071183443069458]
]
>
iex> Nx.LinAlg.pinv(Nx.tensor([[0.5, 0], [0, 1], [0.5, 0]]))
#Nx.Tensor<
f32[2][3]
[
[0.9999999403953552, 0.0, 0.9999999403953552],
[0.0, 1.0, 0.0]
]
>
"""
defn pinv(tensor, opts \\ []) do
opts = keyword!(opts, eps: 1.0e-10)
if Nx.all(Nx.abs(tensor) <= opts[:eps]) do
pinv_zero(tensor)
else
pinv_non_zero(tensor, opts)
end
end
defnp pinv_zero(tensor) do
# the tensor is already zero and the pseudo-inverse
# is defined to be zero in this case
0
|> Nx.tensor(type: Nx.type(tensor))
|> Nx.broadcast(pinv_zero_shape(tensor))
end
deftransformp pinv_zero_shape(tensor) do
shape = Nx.shape(tensor)
rank = tuple_size(shape)
if rank < 2 do
shape
else
[n, m | tl] =
shape
|> Tuple.to_list()
|> Enum.reverse()
tl
|> List.to_tuple()
|> Tuple.insert_at(rank - 2, n)
|> Tuple.insert_at(rank - 1, m)
end
end
defnp pinv_non_zero(tensor, opts \\ []) do
case Nx.rank(tensor) do
0 ->
1 / tensor
1 ->
adjoint(tensor) / norm(tensor) ** 2
_ ->
{u, s, vt} = Nx.LinAlg.svd(tensor, full_matrices?: false)
v = adjoint(vt)
ut = adjoint(u)
s_idx = Nx.abs(s) < opts[:eps]
adjusted_s = Nx.select(s_idx, 1, s)
s_inv_matrix = Nx.select(s_idx, 0, 1 / adjusted_s)
sut = Nx.new_axis(s_inv_matrix, -1) * ut
Nx.dot(v, sut)
end
end
@doc """
Calculates the Eigenvalues and Eigenvectors of batched Hermitian 2-D matrices.
It returns `{eigenvals, eigenvecs}`.
## Options
* `:max_iter` - `integer`. Defaults to `1_000`
Number of maximum iterations before stopping the decomposition
* `:eps` - `float`. Defaults to 1.0e-4
Tolerance applied during the decomposition
Note not all options apply to all backends, as backends may have
specific optimizations that render these mechanisms unnecessary.
## Examples
iex> {eigenvals, eigenvecs} = Nx.LinAlg.eigh(Nx.tensor([[1, 0], [0, 2]]))
iex> Nx.round(eigenvals)
#Nx.Tensor<
f32[2]
[1.0, 2.0]
>
iex> eigenvecs
#Nx.Tensor<
f32[2][2]
[
[1.0, 0.0],
[0.0, 1.0]
]
>
iex> {eigenvals, eigenvecs} = Nx.LinAlg.eigh(Nx.tensor([[0, 1, 2], [1, 0, 2], [2, 2, 3]]))
iex> Nx.round(eigenvals)
#Nx.Tensor<
f32[3]
[5.0, -1.0, -1.0]
>
iex> eigenvecs
#Nx.Tensor<
f32[3][3]
[
[0.4075949788093567, 0.9131628274917603, 0.0],
[0.40837883949279785, -0.18228201568126678, 0.8944271802902222],
[0.8167576789855957, -0.36456403136253357, -0.4472135901451111]
]
>
iex> {eigenvals, eigenvecs} = Nx.LinAlg.eigh(Nx.tensor([[[2, 5],[5, 6]], [[1, 0], [0, 4]]]))
iex> Nx.round(eigenvals)
#Nx.Tensor<
f32[2][2]
[
[9.0, -1.0],
[1.0, 4.0]
]
>
iex> eigenvecs
#Nx.Tensor<
f32[2][2][2]
[
[
[0.5612090229988098, -0.8276740908622742],
[0.8276740908622742, 0.5612090229988098]
],
[
[1.0, 0.0],
[0.0, 1.0]
]
]
>
iex> t = Nx.tensor([[[2, 5],[5, 6]], [[1, 0], [0, 4]]]) |> Nx.vectorize(x: 2)
iex> {eigenvals, eigenvecs} = Nx.LinAlg.eigh(t)
iex> Nx.round(eigenvals)
#Nx.Tensor<
vectorized[x: 2]
f32[2]
[
[9.0, -1.0],
[1.0, 4.0]
]
>
iex> eigenvecs
#Nx.Tensor<
vectorized[x: 2]
f32[2][2]
[
[
[0.5612090229988098, -0.8276740908622742],
[0.8276740908622742, 0.5612090229988098]
],
[
[1.0, 0.0],
[0.0, 1.0]
]
]
>
## Error cases
iex> Nx.LinAlg.eigh(Nx.tensor([[1, 2, 3], [4, 5, 6]]))
** (ArgumentError) tensor must be a square matrix or a batch of square matrices, got shape: {2, 3}
iex> Nx.LinAlg.eigh(Nx.tensor([[1, 2], [3, 4]]))
** (ArgumentError) matrix must be hermitian, a matrix is hermitian iff X = adjoint(X)
"""
def eigh(tensor, opts \\ []) do
apply_vectorized(tensor, fn tensor ->
opts = keyword!(opts, max_iter: 1_000, eps: 1.0e-4)
%T{type: type, shape: shape} = tensor
output_type = Nx.Type.to_floating(type)
{eigenvals_shape, eigenvecs_shape} = Nx.Shape.eigh(shape)
rank = tuple_size(shape)
eigenvecs_name = List.duplicate(nil, rank)
eigenvals_name = tl(eigenvecs_name)
impl!(tensor).eigh(
{%{tensor | names: eigenvals_name, type: output_type, shape: eigenvals_shape},
%{tensor | names: eigenvecs_name, type: output_type, shape: eigenvecs_shape}},
tensor,
opts
)
end)
end
@doc """
Calculates the Singular Value Decomposition of batched 2-D matrices.
It returns `{u, s, vt}` where the elements of `s` are sorted
from highest to lowest.
## Options
* `:max_iter` - `integer`. Defaults to `100`
Number of maximum iterations before stopping the decomposition
* `:full_matrices?` - `boolean`. Defaults to `true`
If `true`, `u` and `vt` are of shape (M, M), (N, N). Otherwise,
the shapes are (M, K) and (K, N), where K = min(M, N).
Note not all options apply to all backends, as backends may have
specific optimizations that render these mechanisms unnecessary.
## Examples
iex> {u, s, vt} = Nx.LinAlg.svd(Nx.tensor([[1, 0, 0], [0, 1, 0], [0, 0, -1]]))
iex> u
#Nx.Tensor<
f32[3][3]
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, -1.0]
]
>
iex> s
#Nx.Tensor<
f32[3]
[1.0, 1.0, 1.0]
>
iex> vt
#Nx.Tensor<
f32[3][3]
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]
]
>
iex> {u, s, vt} = Nx.LinAlg.svd(Nx.tensor([[2, 0, 0], [0, 3, 0], [0, 0, -1], [0, 0, 0]]))
iex> u
#Nx.Tensor<
f32[4][4]
[
[0.0, 0.9999999403953552, 0.0, 0.0],
[1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, -1.0, 0.0],
[0.0, 0.0, 0.0, 1.0]
]
>
iex> s
#Nx.Tensor<
f32[3]
[3.0, 1.9999998807907104, 1.0]
>
iex> vt
#Nx.Tensor<
f32[3][3]
[
[0.0, 1.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 0.0, 1.0]
]
>
iex> {u, s, vt} = Nx.LinAlg.svd(Nx.tensor([[2, 0, 0], [0, 3, 0], [0, 0, -1], [0, 0, 0]]), full_matrices?: false)
iex> u
#Nx.Tensor<
f32[4][3]
[
[0.0, 0.9999999403953552, 0.0],
[1.0, 0.0, 0.0],
[0.0, 0.0, -1.0],
[0.0, 0.0, 0.0]
]
>
iex> s
#Nx.Tensor<
f32[3]
[3.0, 1.9999998807907104, 1.0]
>
iex> vt
#Nx.Tensor<
f32[3][3]
[
[0.0, 1.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 0.0, 1.0]
]
>
"""
def svd(tensor, opts \\ []) do
opts = keyword!(opts, max_iter: 100, full_matrices?: true)
%T{vectorized_axes: vectorized_axes} = tensor = Nx.to_tensor(tensor)
%T{type: type, shape: shape} = tensor = Nx.devectorize(tensor)
Nx.Shared.raise_complex_not_implemented_yet(type, "LinAlg.svd", 2)
output_type = Nx.Type.to_floating(type)
{u_shape, s_shape, v_shape} = Nx.Shape.svd(shape, opts)
rank = tuple_size(shape)
output =
{%{tensor | names: List.duplicate(nil, rank), type: output_type, shape: u_shape},
%{tensor | names: List.duplicate(nil, rank - 1), type: output_type, shape: s_shape},
%{tensor | names: List.duplicate(nil, rank), type: output_type, shape: v_shape}}
:svd
|> Nx.Shared.optional([tensor, opts], output, &Nx.LinAlg.SVD.svd/2)
|> Nx.vectorize(vectorized_axes)
end
@doc """
Calculates the A = PLU decomposition of batched square 2-D matrices A.
## Options
* `:eps` - Rounding error threshold that can be applied during the factorization
## Examples
iex> {p, l, u} = Nx.LinAlg.lu(Nx.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
iex> p
#Nx.Tensor<
s64[3][3]
[
[0, 0, 1],
[0, 1, 0],
[1, 0, 0]
]
>
iex> l
#Nx.Tensor<
f32[3][3]
[
[1.0, 0.0, 0.0],
[0.5714285969734192, 1.0, 0.0],
[0.1428571492433548, 2.0, 1.0]
]
>
iex> u
#Nx.Tensor<
f32[3][3]
[
[7.0, 8.0, 9.0],
[0.0, 0.4285714328289032, 0.8571428656578064],
[0.0, 0.0, 0.0]
]
>
iex> p |> Nx.dot(l) |> Nx.dot(u)
#Nx.Tensor<
f32[3][3]
[
[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0]
]
>
iex> {p, l, u} = Nx.LinAlg.lu(Nx.tensor([[1, 0, 1], [-1, 0, -1], [1, 1, 1]]))
iex> p
#Nx.Tensor<
s64[3][3]
[
[1, 0, 0],
[0, 0, 1],
[0, 1, 0]
]
>
iex> l
#Nx.Tensor<
f32[3][3]
[
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[-1.0, 0.0, 1.0]
]
>
iex> u
#Nx.Tensor<
f32[3][3]
[
[1.0, 0.0, 1.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 0.0]
]
>
iex> p |> Nx.dot(l) |> Nx.dot(u)
#Nx.Tensor<
f32[3][3]
[
[1.0, 0.0, 1.0],
[-1.0, 0.0, -1.0],
[1.0, 1.0, 1.0]
]
>
iex> {p, l, u} = Nx.LinAlg.lu(Nx.tensor([[[9, 8, 7], [6, 5, 4], [3, 2, 1]], [[-1, 0, -1], [1, 0, 1], [1, 1, 1]]]))
iex> p
#Nx.Tensor<
s64[2][3][3]
[
[
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
],
[
[1, 0, 0],
[0, 0, 1],
[0, 1, 0]
]
]
>
iex> l
#Nx.Tensor<
f32[2][3][3]
[
[
[1.0, 0.0, 0.0],
[0.6666666865348816, 1.0, 0.0],
[0.3333333432674408, 2.0, 1.0]
],
[
[1.0, 0.0, 0.0],
[-1.0, 1.0, 0.0],
[-1.0, 0.0, 1.0]
]
]
>
iex> u
#Nx.Tensor<
f32[2][3][3]
[
[
[9.0, 8.0, 7.0],
[0.0, -0.3333333432674408, -0.6666666865348816],
[0.0, 0.0, 0.0]
],
[
[-1.0, 0.0, -1.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 0.0]
]
]
>
iex> p |> Nx.dot([2], [0], l, [1], [0]) |> Nx.dot([2], [0], u, [1], [0])
#Nx.Tensor<
f32[2][3][3]
[
[
[9.0, 8.0, 7.0],
[6.0, 5.0, 4.0],
[3.0, 2.0, 1.0]
],
[
[-1.0, 0.0, -1.0],
[1.0, 0.0, 1.0],
[1.0, 1.0, 1.0]
]
]
>
iex> t = Nx.tensor([[[9, 8, 7], [6, 5, 4], [3, 2, 1]], [[-1, 0, -1], [1, 0, 1], [1, 1, 1]]]) |> Nx.vectorize(x: 2)
iex> {p, l, u} = Nx.LinAlg.lu(t)
iex> p
#Nx.Tensor<
vectorized[x: 2]
s64[3][3]
[
[
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
],
[
[1, 0, 0],
[0, 0, 1],
[0, 1, 0]
]
]
>
iex> l
#Nx.Tensor<
vectorized[x: 2]
f32[3][3]
[
[
[1.0, 0.0, 0.0],
[0.6666666865348816, 1.0, 0.0],
[0.3333333432674408, 2.0, 1.0]
],
[
[1.0, 0.0, 0.0],
[-1.0, 1.0, 0.0],
[-1.0, 0.0, 1.0]
]
]
>
iex> u
#Nx.Tensor<
vectorized[x: 2]
f32[3][3]
[
[
[9.0, 8.0, 7.0],
[0.0, -0.3333333432674408, -0.6666666865348816],
[0.0, 0.0, 0.0]
],
[
[-1.0, 0.0, -1.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 0.0]
]
]
>
## Error cases
iex> Nx.LinAlg.lu(Nx.tensor([[1, 1, 1, 1], [-1, 4, 4, -1], [4, -2, 2, 0]]))
** (ArgumentError) tensor must be a square matrix or a batch of square matrices, got shape: {3, 4}
"""
def lu(tensor, opts \\ []) do
apply_vectorized(tensor, fn tensor ->
opts = keyword!(opts, eps: 1.0e-10)
%T{type: type, shape: shape} = tensor
output_type = Nx.Type.to_floating(type)
{p_shape, l_shape, u_shape} = Nx.Shape.lu(shape)
names = List.duplicate(nil, tuple_size(shape))
impl!(tensor).lu(
{%{tensor | type: type, shape: p_shape, names: names},
%{tensor | type: output_type, shape: l_shape, names: names},
%{tensor | type: output_type, shape: u_shape, names: names}},
tensor,
opts
)
end)
end
@doc """
Produces the tensor taken to the given power by matrix dot-product.
The input is always a tensor of batched square matrices and an integer,
and the output is a tensor of the same dimensions as the input tensor.
The dot-products are unrolled inside `defn`.
## Examples
iex> Nx.LinAlg.matrix_power(Nx.tensor([[1, 2], [3, 4]]), 0)
#Nx.Tensor<
s64[2][2]
[
[1, 0],
[0, 1]
]
>
iex> Nx.LinAlg.matrix_power(Nx.tensor([[1, 2], [3, 4]]), 6)
#Nx.Tensor<
s64[2][2]
[
[5743, 8370],
[12555, 18298]
]
>
iex> Nx.LinAlg.matrix_power(Nx.eye(3), 65535)
#Nx.Tensor<
s64[3][3]
[
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
]
>
iex> Nx.LinAlg.matrix_power(Nx.tensor([[1, 2], [3, 4]]), -1)
#Nx.Tensor<
f32[2][2]
[
[-2.0, 1.0],
[1.5, -0.5]
]
>
iex> Nx.LinAlg.matrix_power(Nx.iota({2, 2, 2}), 3)
#Nx.Tensor<
s64[2][2][2]
[
[
[6, 11],
[22, 39]
],
[
[514, 615],
[738, 883]
]
]
>
iex> Nx.LinAlg.matrix_power(Nx.iota({2, 2, 2}), -3)
#Nx.Tensor<
f32[2][2][2]
[
[
[-4.875, 1.375],
[2.75, -0.75]
],
[
[-110.37469482421875, 76.8747787475586],
[92.249755859375, -64.24981689453125]
]
]
>
iex> Nx.LinAlg.matrix_power(Nx.tensor([[1, 2], [3, 4], [5, 6]]), 1)
** (ArgumentError) matrix_power/2 expects a square matrix or a batch of square matrices, got tensor with shape: {3, 2}
"""
@doc from_backend: false
def matrix_power(tensor, power) when is_integer(power) and power < 0 do
matrix_power(invert(tensor), abs(power))
end
# We need a special-case for 0 since the code below
# is optimized to not compute an initial eye.
def matrix_power(tensor, 0) do
shape = Nx.shape(tensor)
:ok = Nx.Shape.matrix_power(shape)
Nx.eye(shape)
end
def matrix_power(tensor, power) when is_integer(power) do
shape = Nx.shape(tensor)
:ok = Nx.Shape.matrix_power(shape)
rank = Nx.rank(tensor)
batches = Enum.to_list(0..(rank - 3)//1)
dot_product = &Nx.dot(&1, [rank - 1], batches, &2, [rank - 2], batches)
power
|> Integer.digits(2)
|> tl()
|> Enum.reverse()
|> Enum.reduce({nil, tensor}, fn
1, {nil, exp_tensor} ->
{exp_tensor, dot_product.(exp_tensor, exp_tensor)}
1, {result_tensor, exp_tensor} ->
{dot_product.(result_tensor, exp_tensor), dot_product.(exp_tensor, exp_tensor)}
0, {result_tensor, exp_tensor} ->
{result_tensor, dot_product.(exp_tensor, exp_tensor)}
end)
|> then(fn
{nil, exp_tensor} -> exp_tensor
{result, exp_tensor} -> dot_product.(result, exp_tensor)
end)
end
@doc """
Calculates the determinant of batched square matrices.
## Examples
For 2x2 and 3x3, the results are given by the closed formulas:
iex> Nx.LinAlg.determinant(Nx.tensor([[1, 2], [3, 4]]))
#Nx.Tensor<
f32
-2.0
>
iex> Nx.LinAlg.determinant(Nx.tensor([[1.0, 2.0, 3.0], [1.0, -2.0, 3.0], [7.0, 8.0, 9.0]]))
#Nx.Tensor<
f32
48.0
>
When there are linearly dependent rows or columns, the determinant is 0:
iex> Nx.LinAlg.determinant(Nx.tensor([[1.0, 0.0], [3.0, 0.0]]))
#Nx.Tensor<
f32
0.0
>
iex> Nx.LinAlg.determinant(Nx.tensor([[1.0, 2.0, 3.0], [-1.0, -2.0, -3.0], [4.0, 5.0, 6.0]]))
#Nx.Tensor<
f32
0.0
>
The determinant can also be calculated when the axes are bigger than 3:
iex> Nx.LinAlg.determinant(Nx.tensor([
...> [1, 0, 0, 0],
...> [0, 1, 2, 3],
...> [0, 1, -2, 3],
...> [0, 7, 8, 9.0]
...> ]))
#Nx.Tensor<
f32
48.0
>
iex> Nx.LinAlg.determinant(Nx.tensor([
...> [0, 0, 0, 0, -1],
...> [0, 1, 2, 3, 0],
...> [0, 1, -2, 3, 0],
...> [0, 7, 8, 9, 0],
...> [1, 0, 0, 0, 0]
...> ]))
#Nx.Tensor<
f32
48.0
>
iex> Nx.LinAlg.determinant(Nx.tensor([
...> [[2, 4, 6, 7], [5, 1, 8, 8], [1, 7, 3, 1], [3, 9, 2, 4]],
...> [[2, 5, 1, 3], [4, 1, 7, 9], [6, 8, 3, 2], [7, 8, 1, 4]]
...> ]))
#Nx.Tensor<
f32[2]
[630.0, 630.0]
>
iex> t = Nx.tensor([[[1, 0], [0, 2]], [[3, 0], [0, 4]]]) |> Nx.vectorize(x: 2)
iex> Nx.LinAlg.determinant(t)
#Nx.Tensor<
vectorized[x: 2]
f32
[2.0, 12.0]
>
If the axes are named, their names are not preserved in the output:
iex> two_by_two = Nx.tensor([[1, 2], [3, 4]], names: [:x, :y])
iex> Nx.LinAlg.determinant(two_by_two)
#Nx.Tensor<
f32
-2.0
>
iex> three_by_three = Nx.tensor([[1.0, 2.0, 3.0], [1.0, -2.0, 3.0], [7.0, 8.0, 9.0]], names: [:x, :y])
iex> Nx.LinAlg.determinant(three_by_three)
#Nx.Tensor<
f32
48.0
>
Also supports complex inputs:
iex> t = Nx.tensor([[1, 0, 0], [0, Complex.new(0, 2), 0], [0, 0, 3]])
iex> Nx.LinAlg.determinant(t)
#Nx.Tensor<
c64
0.0+6.0i
>
iex> t = Nx.tensor([[0, 0, 0, 1], [0, Complex.new(0, 2), 0, 0], [0, 0, 3, 0], [1, 0, 0, 0]])
iex> Nx.LinAlg.determinant(t)
#Nx.Tensor<
c64
0.0-6.0i
>
"""
# IMPORTANT: This function cannot be a defn because
# optional needs to work on the actual backend.
def determinant(tensor) do
apply_vectorized(tensor, fn tensor ->
shape = Nx.shape(tensor)
{batch_shape, matrix_shape} = shape |> Tuple.to_list() |> Enum.split(-2)
output = Nx.template(List.to_tuple(batch_shape), Nx.Type.to_floating(tensor.type))
case matrix_shape do
[n, n] ->
:ok
shape ->
raise ArgumentError,
"determinant/1 expects a square tensor, got tensor with shape: #{inspect(shape)}"
end
Nx.Shared.optional(:determinant, [tensor], output, fn tensor ->
case matrix_shape do
[2, 2] ->
determinant_2by2(tensor)
[3, 3] ->
determinant_3by3(tensor)
[n, n] ->
determinant_NbyN(tensor, batch_shape_n: List.to_tuple(batch_shape ++ [n]))
end
end)
end)
end
defnp determinant_2by2(t) do
t = Nx.tile(t, [1, 2])
result = diagonal_product(t, 0) - diagonal_product(t, 1)
# Ensure floating point result
result * 1.0
end
defnp determinant_3by3(t) do
rank = Nx.rank(t)
pos_t = Nx.tile(t, [1, 2])
neg_t = Nx.reverse(pos_t, axes: [rank - 1])
result =
diagonal_product(pos_t, 0) +
diagonal_product(pos_t, 1) +
diagonal_product(pos_t, 2) -
diagonal_product(neg_t, 0) -
diagonal_product(neg_t, 1) -
diagonal_product(neg_t, 2)
# Ensure floating point result
result * 1.0
end
defnp determinant_NbyN(t, opts \\ []) do
batch_shape_n = assert_keys(opts, [:batch_shape_n])[:batch_shape_n]
rank = Nx.rank(t)
shape = Nx.shape(t)
# Taken from slogdet at https://github.com/google/jax/blob/a3a6afcd5b8bf3d60aba94054bb0001c0fcc50d7/jax/_src/numpy/linalg.py#L134
{p, l, u} = Nx.LinAlg.lu(t)
diag = Nx.take_diagonal(l) * Nx.take_diagonal(u)
is_zero = Nx.any(diag == 0, axes: [-1])
{batch_axes, transition_bcast_axes_1, transition_bcast_axes_2} = determinant_axes(rank)
transitions =
Nx.dot(
Nx.real(p),
[rank - 1],
batch_axes,
Nx.iota(batch_shape_n, axis: -1),
[rank - 2],
batch_axes
)
upper_tri_mask = Nx.iota(shape, axis: -2) < Nx.iota(shape, axis: -1)
transitions_gt =
Nx.broadcast(transitions, shape, axes: transition_bcast_axes_1) >
Nx.broadcast(transitions, shape, axes: transition_bcast_axes_2)
parity = Nx.sum(transitions_gt * upper_tri_mask, axes: [-2, -1])
sign = -2 * Nx.remainder(parity, 2) + 1
Nx.select(is_zero, 0, sign * Nx.product(diag, axes: [-1]))
end
deftransformp determinant_axes(rank) do
batch_axes = Enum.to_list(0..(rank - 3)//1)
transition_bcast_axes_1 = Enum.to_list(0..(rank - 2))
transition_bcast_axes_2 = batch_axes ++ [rank - 1]
{batch_axes, transition_bcast_axes_1, transition_bcast_axes_2}
end
defnp diagonal_product(t, offset) do
rank = Nx.rank(t)
t
|> Nx.take_diagonal(offset: offset)
|> Nx.product(axes: [rank - 2])
end
@doc """
Return matrix rank of input M × N matrix using Singular Value Decomposition method.
Approximate the number of linearly independent rows by calculating the number
of singular values greater than `eps * max(singular values) * max(M, N)`.
This also appears in Numerical recipes in the discussion of SVD solutions for
linear least squares [1].
[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
“Numerical Recipes (3rd edition)”, Cambridge University Press, 2007, page 795.
## Options
* `:eps` - Rounding error threshold used to assume values as 0. Defaults to `1.0e-7`
## Examples
iex> Nx.LinAlg.matrix_rank(Nx.tensor([[1, 2], [3, 4]]))
#Nx.Tensor<
u64
2
>
iex> Nx.LinAlg.matrix_rank(Nx.tensor([[1, 1, 1, 1], [1, 1, 1, 1], [1, 2, 3, 4]]))
#Nx.Tensor<
u64
2
>
iex> Nx.LinAlg.matrix_rank(Nx.tensor([[1, 1, 1], [2, 2, 2], [8, 9, 10], [-2, 1, 5]]))
#Nx.Tensor<
u64
3
>
## Error cases
iex> Nx.LinAlg.matrix_rank(Nx.tensor([1, 2, 3]))
** (ArgumentError) tensor must have rank 2, got rank 1 with shape {3}
iex> Nx.LinAlg.matrix_rank(Nx.tensor([[1, Complex.new(0, 2)], [3, Complex.new(0, -4)]]))
** (ArgumentError) Nx.LinAlg.matrix_rank/2 is not yet implemented for complex inputs
"""
@doc from_backend: false
defn matrix_rank(a, opts \\ []) do
# TODO: support batching when SVD supports it too
opts = keyword!(opts, eps: 1.0e-7)
%T{type: type, shape: shape} = Nx.to_tensor(a)
size = Nx.rank(shape)
case type do
{:c, _} ->
raise ArgumentError, "Nx.LinAlg.matrix_rank/2 is not yet implemented for complex inputs"
_ ->
nil
end
if size != 2 do
raise(
ArgumentError,
"tensor must have rank 2, got rank #{inspect(size)} with shape #{inspect(shape)}"
)
end
# Calculate max dimension
{row_dim, col_dim} = shape
max_dim = if row_dim > col_dim, do: row_dim, else: col_dim
# Calculate max singular value
{_u, s, _v} = Nx.LinAlg.svd(a)
s_max = Nx.reduce_max(s)
# Set tolerance values
tol = opts[:eps] * max_dim * s_max
# Calculate matrix rank
Nx.sum(s > tol)
end
defp apply_vectorized(tensor, fun) when is_function(fun, 1) do
# same as Nx's apply_vectorized defp, but written in a "public-api" way!
%T{vectorized_axes: vectorized_axes} = tensor = Nx.to_tensor(tensor)
tensor
|> Nx.devectorize()
|> then(fun)
|> case do
%T{} = t ->
Nx.vectorize(t, vectorized_axes)
{a, b} ->
{Nx.vectorize(a, vectorized_axes), Nx.vectorize(b, vectorized_axes)}
{a, b, c} ->
{
Nx.vectorize(a, vectorized_axes),
Nx.vectorize(b, vectorized_axes),
Nx.vectorize(c, vectorized_axes)
}
end
end
end