# Ollama Handler
[](https://hex.pm/packages/ollama_handler)
[](https://hexdocs.pm/ollama_handler)
[](LICENSE)
A simple and flexible Erlang library for interacting with the Ollama API. This library provides a clean interface to generate text, perform chat completions, and manage configurations for Ollama models.
## Features
- 🚀 **Simple API** - Easy-to-use functions for text generation and chat
- ⚙️ **Flexible Configuration** - Support for default, environment, and custom configurations
- 🔄 **Multiple Endpoints** - Support for both generate and chat APIs
- 🛡️ **Error Handling** - Comprehensive error handling and type safety
- 📝 **Well Documented** - Complete type specifications and documentation
- 🔧 **Environment Variables** - Easy configuration through environment variables
## Installation
Add `ollama_handler` to your `rebar.config` dependencies:
```erlang
{deps, [
{ollama_handler, {git, "https://github.com/your-username/ollama_handler.git", {branch, "main"}}}
]}.
```
Or if published to hex.pm:
```erlang
{deps, [
{ollama_handler, "1.0.0"}
]}.
```
Then run:
```bash
rebar3 deps
```
## Prerequisites
- Erlang/OTP 24 or higher
- [Ollama](https://ollama.ai/) running locally or remotely
- A downloaded model (e.g., `ollama pull llama2`)
## Quick Start
### Basic Text Generation
```erlang
% Start your Erlang shell
1> application:start(inets).
ok
2> {ok, Response} = ollama_handler:generate("Explain quantum computing in simple terms").
{ok, <<"Quantum computing is a revolutionary computing paradigm...">>}
3> ollama_handler:print_result({ok, Response}).
Quantum computing is a revolutionary computing paradigm...
ok
```
### Chat Completion
```erlang
1> Messages = [
#{role => <<"user">>, content => <<"Hello! How are you today?">>}
].
2> {ok, Response} = ollama_handler:chat(Messages).
{ok, <<"Hello! I'm doing well, thank you for asking...">>}
```
### With Custom Configuration
```erlang
1> Config = #{
model => <<"codellama">>,
temperature => 0.3,
max_tokens => 500
}.
2> {ok, Response} = ollama_handler:generate("Write a Python function to sort a list", Config).
```
## API Reference
### Core Functions
#### `generate/1,2`
Generate text from a simple prompt.
```erlang
-spec generate(string() | binary()) -> ollama_result().
-spec generate(string() | binary(), config()) -> ollama_result().
```
**Examples:**
```erlang
ollama_handler:generate("What is the meaning of life?").
ollama_handler:generate("Explain AI", #{model => <<"phi3">>, temperature => 0.8}).
```
#### `chat/1,2`
Perform chat completion using the messages format.
```erlang
-spec chat(messages()) -> ollama_result().
-spec chat(messages(), config()) -> ollama_result().
```
**Examples:**
```erlang
Messages = [
#{role => <<"system">>, content => <<"You are a helpful assistant">>},
#{role => <<"user">>, content => <<"Hello!">>}
],
ollama_handler:chat(Messages).
```
#### `generate_with_context/2,3`
Generate text with additional context.
```erlang
-spec generate_with_context(string() | binary(), string() | binary()) -> ollama_result().
-spec generate_with_context(string() | binary(), string() | binary(), config()) -> ollama_result().
```
**Examples:**
```erlang
Context = "You are a expert in mathematics",
Prompt = "Explain calculus",
ollama_handler:generate_with_context(Context, Prompt).
```
### Configuration Functions
#### `default_config/0`
Get the default hardcoded configuration.
```erlang
Config = ollama_handler:default_config().
```
#### `get_env_config/0`
Get configuration from environment variables with fallback to defaults.
```erlang
Config = ollama_handler:get_env_config().
```
#### `merge_config/2`
Merge two configurations, with the second taking precedence.
```erlang
BaseConfig = ollama_handler:default_config(),
CustomConfig = #{model => <<"llama2">>, temperature => 0.9},
FinalConfig = ollama_handler:merge_config(BaseConfig, CustomConfig).
```
### Utility Functions
#### `print_result/1`
Print the result of an operation to stdout.
```erlang
Result = ollama_handler:generate("Hello world"),
ollama_handler:print_result(Result).
```
#### `format_prompt/2`
Format a prompt template with arguments.
```erlang
Prompt = ollama_handler:format_prompt("Translate '~s' to ~s", ["hello", "French"]).
```
## Configuration
### Environment Variables
You can configure the library using environment variables:
| Variable | Description | Default |
|----------|-------------|---------|
| `OLLAMA_ENDPOINT` | Ollama API endpoint for generation | `http://localhost:11434/api/generate` |
| `OLLAMA_CHAT_ENDPOINT` | Ollama API endpoint for chat | `http://localhost:11434/api/chat` |
| `OLLAMA_MODEL` | Default model to use | `llama2` |
| `OLLAMA_TEMPERATURE` | Generation temperature (0.0-1.0) | `0.7` |
| `OLLAMA_MAX_TOKENS` | Maximum tokens to generate | `1000` |
| `OLLAMA_STREAM` | Enable streaming responses | `false` |
| `OLLAMA_SYSTEM_PROMPT` | Default system prompt | (none) |
**Example:**
```bash
export OLLAMA_MODEL="codellama"
export OLLAMA_TEMPERATURE="0.3"
export OLLAMA_ENDPOINT="http://my-ollama-server:11434/api/generate"
```
### Configuration Map
You can also pass configuration directly as a map:
```erlang
Config = #{
endpoint => "http://localhost:11434/api/generate",
chat_endpoint => "http://localhost:11434/api/chat",
model => <<"phi3">>,
stream => false,
temperature => 0.8,
max_tokens => 1500,
system_prompt => <<"You are a helpful assistant">>,
additional_options => #{}
}.
```
## Message Format
For chat completions, use the following message format:
```erlang
Messages = [
#{role => <<"system">>, content => <<"You are a helpful assistant">>},
#{role => <<"user">>, content => <<"Hello, how can you help me?">>},
#{role => <<"assistant">>, content => <<"I can help you with various tasks...">>},
#{role => <<"user">>, content => <<"Tell me about Erlang">>}
].
```
Supported roles:
- `system` - System instructions
- `user` - User messages
- `assistant` - Assistant responses
## Error Handling
The library returns tuples in the format `{ok, Result}` or `{error, Reason}`:
```erlang
case ollama_handler:generate("Hello") of
{ok, Response} ->
io:format("Success: ~s~n", [Response]);
{error, {ollama_error, StatusCode, Body}} ->
io:format("Ollama API error ~p: ~s~n", [StatusCode, Body]);
{error, {request_failed, Reason}} ->
io:format("Request failed: ~p~n", [Reason]);
{error, {json_parse_error, Error}} ->
io:format("JSON parsing error: ~p~n", [Error])
end.
```
## Examples
### Building a Simple Chatbot
```erlang
-module(simple_chatbot).
-export([start/0, chat_loop/1]).
start() ->
application:start(inets),
InitialMessages = [
#{role => <<"system">>, content => <<"You are a friendly chatbot">>}
],
chat_loop(InitialMessages).
chat_loop(Messages) ->
io:format("You: "),
case io:get_line("") of
eof -> ok;
Line ->
UserMessage = #{role => <<"user">>, content => list_to_binary(string:trim(Line))},
NewMessages = Messages ++ [UserMessage],
case ollama_handler:chat(NewMessages) of
{ok, Response} ->
io:format("Bot: ~s~n", [Response]),
AssistantMessage = #{role => <<"assistant">>, content => Response},
chat_loop(NewMessages ++ [AssistantMessage]);
{error, Reason} ->
io:format("Error: ~p~n", [Reason]),
chat_loop(Messages)
end
end.
```
### Text Summarization
```erlang
-module(text_summarizer).
-export([summarize/1]).
summarize(Text) ->
Context = "You are an expert at summarizing text. Provide a concise summary.",
Prompt = "Summarize the following text:\n\n" ++ Text,
Config = #{
model => <<"llama2">>,
temperature => 0.3,
max_tokens => 200
},
ollama_handler:generate_with_context(Context, Prompt, Config).
```
### Code Generation
```erlang
-module(code_generator).
-export([generate_function/2]).
generate_function(Language, Description) ->
Prompt = io_lib:format("Write a ~s function that ~s. Include comments and proper formatting.",
[Language, Description]),
Config = #{
model => <<"codellama">>,
temperature => 0.2,
max_tokens => 500
},
ollama_handler:generate(Prompt, Config).
```
## Development
### Building
```bash
rebar3 compile
```
### Running Tests
```bash
rebar3 eunit
```
### Type Checking
```bash
rebar3 dialyzer
```
### Code Analysis
```bash
rebar3 xref
```
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## Acknowledgments
- [Ollama](https://ollama.ai/) for providing the excellent local LLM platform
- The Erlang/OTP team for the robust runtime system
- [jsx](https://github.com/talentdeficit/jsx) for JSON encoding/decoding