USE_CASES_2.md

You're still manually running scripts when you should have agents automatically generating and running pipelines on demand. Here's the
   clear path:

  The Disconnect

  Currently:
  # Manual process
  mix pipeline.generate "Create data validation pipeline"
  mix pipeline.run evolved_pipelines/data_validation_123.yaml

  What you want:
  # Agent automatically does this
  Agent.handle_request("I need to validate this data")
  # -> Generates pipeline, runs it, returns results

  Easy Path: Build Your Agent Framework

  Step 1: Agent Wrapper (30 minutes)

  defmodule PipelineAgent do
    def handle_request(user_request) do
      # Generate pipeline automatically
      {:ok, pipeline_path} = generate_pipeline(user_request)

      # Run it immediately
      {:ok, results} = run_pipeline(pipeline_path)

      # Return results to user
      format_results(results)
    end

    defp generate_pipeline(request) do
      # Your existing generator, but programmatic
      Mix.Tasks.Pipeline.Generate.run([request])
    end
  end

  Step 2: Web API (1 hour)

  # Phoenix controller
  defmodule PipelineWeb.AgentController do
    def chat(conn, %{"message" => user_request}) do
      result = PipelineAgent.handle_request(user_request)
      json(conn, %{response: result})
    end
  end

  Step 3: Simple Frontend (1 hour)

  ```html
  <!-- Single page chat interface -->
  <div id="chat">
    <input id="request" placeholder="I need to analyze log files...">
    <button onclick="sendRequest()">Generate & Run Pipeline</button>
    <div id="results"></div>
  </div>
  ```

  The Real Vision: Pipeline-Generating Agents

  Instead of users running commands, they talk to specialized agents:

  # Data Agent
  DataAgent.chat("I have messy CSV files that need cleaning")
  # -> Generates data cleaning pipeline, runs it, returns clean data

  # DevOps Agent
  DevOpsAgent.chat("Deploy this app with monitoring")
  # -> Generates deployment pipeline, executes it, returns status

  # Analysis Agent
  AnalysisAgent.chat("Find patterns in user behavior data")
  # -> Generates analysis pipeline, runs it, returns insights

  Immediate Next Steps (This Weekend)

  1. Extract the generation logic from Mix.Tasks into a regular module
  2. Add a simple HTTP endpoint that takes requests and returns results
  3. Create a basic chat interface
  4. Test with real requests like "analyze my git commits"

  The beauty is you already have the hard parts (pipeline generation, execution, DNA evolution). You just need to wrap it in an agent interface so users can talk
   to it instead of running commands.

  Start with Step 1 - make PipelineAgent.handle_request/1 work programmatically. Everything else builds from there.