defmodule PostDNN do
@moduledoc """
Post-processing utilities for Deep Neural Network.
"""
alias PostDNN.NIF
@doc """
Execute post processing: nms.
## Parameters
* num_boxes - number of candidate boxes
* num_class - number of category class
* boxes - binaries, serialized boxes tensor[`num_boxes`][4]; dtype: float32
* scores - binaries, serialized score tensor[`num_boxes`][`num_class`]; dtype: float32
* opts
* iou_threshold: - IOU threshold
* score_threshold: - score cutoff threshold
* sigma: - soft IOU parameter
* boxrepr: - type of box representation
* 0 - center pos and width/height
* 1 - top-left pos and width/height
* 2 - top-left and bottom-right corner pos
## Examples
```elixir
non_max_suppression_multi_class(
Nx.shape(scores), Nx.to_binary(boxes), Nx.to_binary(scores), boxrepr: :corner
)
```
"""
def non_max_suppression_multi_class({num_boxes, num_class}, boxes, scores, opts \\ []) do
box_repr = case Keyword.get(opts, :boxrepr, :center) do
:center -> 0
:topleft -> 1
:corner -> 2
end
iou_threshold = Keyword.get(opts, :iou_threshold, 0.5)
score_threshold = Keyword.get(opts, :score_threshold, 0.25)
sigma = Keyword.get(opts, :sigma, 0.0)
case NIF.dnn_non_max_suppression_multi_class(num_boxes, box_repr, boxes, num_class, scores, iou_threshold, score_threshold, sigma) do
{:ok, nil} -> :notfind
{:ok, result} -> Poison.decode(result)
any -> any
end
end
@doc """
Create a list of coordinates for mesh grid points - top-left of each grid.
## Parameters
* shape - tupple {width, height} for overall size.
* pitches - list of grid spacing.
* opts
* :center - return center of each grid.
## Examples
```
mesh_grid({416,416}, [8,16,32,64], [:center])
```
"""
def mesh_grid(shape, pitches, opts \\ [])
def mesh_grid(shape, pitches, opts) when is_list(pitches) do
Enum.map(pitches, &mesh_grid(shape, &1, opts))
|> Nx.concatenate()
end
def mesh_grid({w, h}, pitch, opts) when w >= 1 and h >= 1 do
m = trunc(Float.ceil(h/pitch))
n = trunc(Float.ceil(w/pitch))
# grid coodinates list
grid = (for y <- 0..(m-1), x <- 0..(n-1), do: [x, y])
|> Nx.tensor(type: {:f, 32})
|> (&if :center in opts, do: Nx.add(&1, 0.5), else: &1).()
|> Nx.multiply(pitch)
# pitch list
pitch = Nx.broadcast(pitch, {m*n, 1})
|> Nx.as_type({:f, 32})
Nx.concatenate([grid, pitch], axis: 1)
end
@doc """
Take records satisfying the predicate function `pred?` from table.
## Parameters
* tensor - 2rank tensor (table). each row represents a record.
* pred? - predicate function to sieve records. a function that returns a rank1
tensor with '1' in the index position of records to be kept and
'0' in the index position of those to be discarded.
## Examples
```
pred? = fn tensor -> Nx.greater(tensor, 0.2) end
sieve(table, pred?)
```
"""
def sieve(tensor, pred?) do
# apply the predicate to tensor to get the judgment for each record (row)
judge = pred?.(tensor)
# count the number of records for which the judgement was YES(1).
count = Nx.sum(judge) |> Nx.to_number()
# take only records for which the judgement is YES.
index =
Nx.argsort(judge, direction: :desc)
|> Nx.slice_along_axis(0, count)
Nx.take(tensor, index)
end
end