defmodule PostDNN do
@moduledoc """
Post-processing utilities for Deep Neural Network.
"""
alias PostDNN.NIF
@doc """
Execute post processing: nms.
## Parameters
* num_boxes - number of candidate boxes
* num_class - number of category class
* boxes - binaries, serialized boxes tensor[`num_boxes`][4]; dtype: float32
* scores - binaries, serialized score tensor[`num_boxes`][`num_class`]; dtype: float32
* opts
* iou_threshold: - IOU threshold
* score_threshold: - score cutoff threshold
* sigma: - soft IOU parameter
* boxrepr: - type of box representation
* :center - center pos and width/height
* :topleft - top-left pos and width/height
* :corner - top-left and bottom-right corner pos
* label: map - replace "number" with "name" label according to a map %{0 => "foo", 1 => "baa", ...}
* label: path - given a file path, read it and create the label map
## Examples
```elixir
non_max_suppression_multi_class(
Nx.shape(scores), Nx.to_binary(boxes), Nx.to_binary(scores), boxrepr: :corner
)
```
"""
def non_max_suppression_multi_class({num_boxes, num_class}, boxes, scores, opts \\ []) do
label = case Keyword.get(opts, :label) do
map when is_map(map) -> map
path when is_binary(path) ->
(for item <- File.stream!(path) do String.trim_trailing(item) end)
|> Enum.with_index(&{&2, &1})
|> Enum.into(%{})
any -> any
end
box_repr = case Keyword.get(opts, :boxrepr, :center) do
:center -> 0
:topleft -> 1
:corner -> 2
end
iou_threshold = Keyword.get(opts, :iou_threshold, 0.5)
score_threshold = Keyword.get(opts, :score_threshold, 0.25)
sigma = Keyword.get(opts, :sigma, 0.0)
case NIF.dnn_non_max_suppression_multi_class(num_boxes, box_repr, boxes, num_class, scores, iou_threshold, score_threshold, sigma) do
{:ok, nil} -> :notfind
{:ok, result} -> Poison.decode(result) |> labeling(label)
any -> any
end
end
defp labeling(nms_result, label) when is_map(label) do
{:ok, result} = nms_result
{
:ok,
Map.keys(result)
|> Enum.map(&{label[String.to_integer(&1)], result[&1]})
|> Enum.into(%{})
}
end
defp labeling(nms_result, _), do: nms_result
@doc """
Adjust NMS result to aspect of the input image. (letterbox)
## Parameters:
* nms_result - NMS result {:ok, result}
* [rx, ry] - aspect ratio of the input image
"""
def adjust2letterbox(nms_result, aspect \\ [1.0, 1.0])
def adjust2letterbox({:ok, result}, [rx, ry]) do
{
:ok,
Enum.reduce(Map.keys(result), result, fn key,map ->
Map.update!(map, key, &Enum.map(&1, fn [score, x1, y1, x2, y2, index] ->
x1 = if x1 < 0.0, do: 0.0, else: x1
y1 = if y1 < 0.0, do: 0.0, else: y1
x2 = if x2 > 1.0, do: 1.0, else: x2
y2 = if y2 > 1.0, do: 1.0, else: y2
[score, x1/rx, y1/ry, x2/rx, y2/ry, index]
end))
end)
}
end
def adjust2letterbox(nms_result, _), do: nms_result
@doc """
Create a list of (x,y) coordinates for mesh grid points - top-left of each grid.
## Parameters
* shape - tupple {width, height} for overall size.
* pitches - list of grid spacing.
* opts
* :center - return center of each grid.
* :transpose - return transposed table
* :normalize - normalize (x,y) cordinate to {0.0..1.0}
* :rowfirst - change to row scan first. (default: column scan first)
## Examples
```
meshgrid({416,416}, [8,16,32,64], [:center])
```
"""
def meshgrid(shape, pitches, opts \\ [])
def meshgrid(shape, pitches, opts) when is_list(pitches) do
Enum.map(pitches, &meshgrid(shape, &1, opts))
|> Nx.concatenate(axis: (if :transpose in opts, do: 1, else: 0))
end
def meshgrid({w, h}, pitch, opts) when w >= 1 and h >= 1 do
m = trunc(Float.ceil(h/pitch))
n = trunc(Float.ceil(w/pitch))
{scale, pitch} = if :normalize in opts,
do: {Nx.tensor([pitch/w, pitch/h]), Nx.tensor([pitch/w, pitch/h])},
else: {Nx.tensor([pitch, pitch]), Nx.tensor([pitch, pitch])}
# grid coodinates list
grid = if :rowfirst in opts do
(for x <- 0..(n-1), y <- 0..(m-1), do: [x, y])
else
(for y <- 0..(m-1), x <- 0..(n-1), do: [x, y])
end
|> Nx.tensor(type: :f32)
|> (&if :center in opts, do: Nx.add(&1, 0.5), else: &1).()
|> Nx.multiply(scale)
# pitch list
pitch = Nx.broadcast(pitch, {m*n, 2})
|> Nx.as_type(:f32)
Nx.concatenate([grid, pitch], axis: 1)
|> (&if :transpose in opts, do: Nx.transpose(&1), else: &1).()
end
@doc """
Create a priorbox which is a list of the coodinate of the boxes in each grid.
## Parameters
* shape - tupple {width, height} for overall size.
* pitch_boxes - list of tupples which have grid spacing and boxes size.
* opts
* :transpose - return transposed table
* :normalize - normalize (x,y) cordinate to {0.0..1.0}
* :rowfirst - change to row scan first. (default: column scan first)
## Examples
```
priorbox({416,416}, [{8, [8, 10, 15]}, {16, [16, 20]}], [:normalize])
```
"""
def priorbox(shape, pitch_boxes, opts \\ [])
def priorbox(shape, pitch_boxes, opts) when is_list(pitch_boxes) do
Enum.map(pitch_boxes, &priorbox(shape, &1, opts))
|> Nx.concatenate(axis: (if :transpose in opts, do: 1, else: 0))
end
def priorbox({w, h}, {pitch, boxes}, opts) when w >= 1 and h >= 1 do
m = trunc(Float.ceil(h/pitch))
n = trunc(Float.ceil(w/pitch))
scaling = if :normalize in opts do
fn x -> Nx.tensor([x/w, x/h], type: :f32) end
else
fn x -> Nx.tensor([x, x], type: :f32) end
end
# grid coodinates list
grid = if :rowfirst in opts do
(for x <- 0..(n-1), y <- 0..(m-1), do: [x, y])
else
(for y <- 0..(m-1), x <- 0..(n-1), do: [x, y])
end
|> Nx.tensor(type: :f32)
|> Nx.add(0.5)
|> Nx.multiply(scaling.(pitch))
# priobox list
Enum.flat_map(boxes, fn side ->
[
grid, # grid
Nx.broadcast(scaling.(side), {m*n, 2}) # box size
]
end)
|> Nx.concatenate(axis: 1)
|> Nx.reshape({:auto, 4})
|> (&if :transpose in opts, do: Nx.transpose(&1), else: &1).()
end
@doc """
Take records satisfying the predicate function `pred?` from table.
## Parameters
* tensor - 2rank tensor (table). each row represents a record.
* pred? - predicate function to sieve records. a function that returns a rank1
tensor with '1' in the index position of records to be kept and
'0' in the index position of those to be discarded.
## Examples
```
pred? = fn tensor -> Nx.greater(tensor, 0.2) end
sieve(table, pred?)
```
"""
require Nx
def sieve(tensor, pred?) when Nx.is_tensor(tensor) do
# apply the predicate to tensor to get the judgment for each record (row)
judge = pred?.(tensor)
# count the number of records for which the judgement was YES(1).
count = Nx.sum(judge) |> Nx.to_number()
# take only records for which the judgement is YES.
index =
Nx.argsort(judge, direction: :desc)
|> Nx.slice_along_axis(0, count)
Nx.take(tensor, index)
end
@doc """
Take records satisfying the predicate function `pred?` from tables.
## Parameters
* tensor - 2rank tensor (table). each row represents a record.
* list - list of tensors which has same size of axis 0.
* pred? - predicate function to sieve records. a function that returns a rank1
tensor with '1' in the index position of records to be kept and
'0' in the index position of those to be discarded.
## Examples
```
pred? = fn tensor -> Nx.greater(tensor, 0.2) end
sieve(table1, [table2, table2], pred?)
```
"""
def sieve(tensor_a, [], pred?), do: sieve(tensor_a, pred?)
def sieve(tensor_a, list, pred?) when Nx.is_tensor(tensor_a) and is_list(list) do
# precondition: each tensor must have same size of axis_0.
axis_0 = Nx.axis_size(tensor_a, 0)
unless Enum.all?(list, fn x -> Nx.axis_size(x, 0) == axis_0 end),
do: "mismatch axis 0 of tensors"
# apply the predicate to tensor to get the judgment for each record (row)
judge = pred?.(tensor_a)
# count the number of records for which the judgement was YES(1).
count = Nx.sum(judge) |> Nx.to_number()
# take only records for which the judgement is YES.
index =
Nx.argsort(judge, direction: :desc)
|> Nx.slice_along_axis(0, count)
Enum.map([tensor_a|list], &Nx.take(&1, index))
end
@doc """
Clamp value within {lower, upper}.
"""
def clamp(x, {_lower, _upper}=lower_upper) when is_list(x),
do: x |> Enum.map(&clamp(&1, lower_upper))
def clamp(x, {lower, upper}) when is_number(x),
do: x |> max(lower) |> min(upper)
def clamp(x, {lower, upper}) when Nx.is_tensor(x),
do: x |> Nx.max(lower) |> Nx.min(upper)
end