# PtcRunner
[](https://hex.pm/packages/ptc_runner)
[](https://hexdocs.pm/ptc_runner)
[](https://github.com/andreasronge/ptc_runner/actions/workflows/test.yml)
[](https://hex.pm/packages/ptc_runner)
[](LICENSE)
[](https://github.com/andreasronge/ptc_runner)
[](https://livebook.dev/run?url=https%3A%2F%2Fraw.githubusercontent.com%2Fandreasronge%2Fptc_runner%2Fmain%2Flivebooks%2Fptc_runner_playground.livemd)
Build LLM agents that write and execute programs. SubAgents combine the reasoning power of LLMs with the computational precision of a sandboxed interpreter.
## Quick Start
```elixir
# Conceptual example - see Getting Started guide for runnable code
{:ok, step} = PtcRunner.SubAgent.run(
"What's the total value of orders over $100?",
tools: %{"get_orders" => &MyApp.Orders.list/0},
signature: "{total :float}",
llm: my_llm
)
step.return.total #=> 2450.00
```
**Try it yourself:** The [Getting Started guide](docs/guides/subagent-getting-started.md) includes fully runnable examples you can copy-paste.
The SubAgent doesn't answer directly - it writes a program that computes the answer:
```clojure
(->> (ctx/get_orders)
(filter (where :amount > 100))
(sum-by :amount))
```
This is [Programmatic Tool Calling](https://www.anthropic.com/engineering/advanced-tool-use): instead of the LLM being the computer, it programs the computer.
## Why PtcRunner?
**LLMs as programmers, not computers.** Most agent frameworks treat LLMs as the runtime. PtcRunner inverts this: LLMs generate programs that execute deterministically in a sandbox.
### BEAM-Native Advantages
- **Parallel tool calling**: `pmap`/`pcalls` execute I/O concurrently using lightweight BEAM processes
- **Process isolation**: Each execution runs in a sandboxed process with timeout and heap limits
- **Fault tolerance**: Crashes don't propagate; built-in supervision patterns
### Safe Lisp DSL
- **LLM-friendly**: Minimal syntax, easy to generate correctly
- **Safe by construction**: No side effects, no system access, bounded iteration
- **Inspectable**: Debug by examining generated programs
### Unique Features
- **Context firewall**: `_` prefixed fields stay in BEAM memory, hidden from LLM prompts
- **Transactional memory**: `def` persists data across turns without bloating context
- **Composable SubAgents**: Nest agents as tools with isolated state and turn budgets
- **Type-driven retry**: Signatures validate outputs; agents auto-correct on mismatch
### Examples
**Parallel tool calling** - fetch data concurrently:
```clojure
;; LLM generates this - executes in parallel automatically
(let [[user orders stats] (pcalls #(ctx/get_user {:id ctx/user_id})
#(ctx/get_orders {:id ctx/user_id})
#(ctx/get_stats {:id ctx/user_id}))]
{:user user :order_count (count orders) :stats stats})
```
**Context firewall** - keep large data out of LLM prompts:
```elixir
# The LLM sees: %{summary: "Found 3 urgent emails"}
# Elixir gets: %{summary: "...", _email_ids: [101, 102, 103]}
signature: "{summary :string, _email_ids [:int]}"
```
**Compile SubAgents** - LLM called once, execute many times:
```elixir
# LLM derives the program once during compilation
{:ok, compiled} = SubAgent.compile(classifier_agent, llm: my_llm, sample: %{text: "example"})
# Execute without LLM calls - deterministic and fast
compiled.execute.(%{text: "new input"}) #=> %Step{return: %{category: "support"}}
```
## Installation
```elixir
def deps do
[{:ptc_runner, "~> 0.4.1"}]
end
```
## Documentation
### Guides
- **[Getting Started](docs/guides/subagent-getting-started.md)** - Build your first SubAgent
- **[Core Concepts](docs/guides/subagent-concepts.md)** - Context, memory, and the firewall convention
- **[Patterns](docs/guides/subagent-patterns.md)** - Chaining, orchestration, and composition
- **[Testing](docs/guides/subagent-testing.md)** - Mocking LLMs and integration testing
- **[Troubleshooting](docs/guides/subagent-troubleshooting.md)** - Common issues and solutions
### Reference
- **[Signature Syntax](docs/signature-syntax.md)** - Input/output type contracts
- **[PTC-Lisp Specification](docs/ptc-lisp-specification.md)** - The language SubAgents write
- **[Benchmark Evaluation](docs/benchmark-eval.md)** - LLM accuracy by model
### Interactive
- **`mix ptc.repl`** - Interactive REPL for testing PTC-Lisp expressions
- **[Playground Livebook](https://livebook.dev/run?url=https%3A%2F%2Fgithub.com%2Fandreasronge%2Fptc_runner%2Fblob%2Fmain%2Flivebooks%2Fptc_runner_playground.livemd)** - Try PTC-Lisp interactively
- **[LLM Agent Livebook](https://livebook.dev/run?url=https%3A%2F%2Fgithub.com%2Fandreasronge%2Fptc_runner%2Fblob%2Fmain%2Flivebooks%2Fptc_runner_llm_agent.livemd)** - Build an agent end-to-end
- **[Examples](https://github.com/andreasronge/ptc_runner/tree/main/examples)** - Runnable example applications
## Low-Level API
For direct program execution without the agentic loop:
```elixir
{:ok, step} = PtcRunner.Lisp.run(
"(->> ctx/items (filter (where :active)) (count))",
context: %{items: items}
)
step.return #=> 3
```
Programs run in isolated BEAM processes with resource limits (1s timeout, 10MB heap).
See `PtcRunner.Lisp` module docs for options. A JSON DSL (`PtcRunner.Json`) is also available for schema-enforced execution.
## License
MIT