defmodule Rational do
@moduledoc """
Elixir library implementing rational numbers and math.
The library adds new type of `t:rational/0` numbers and basic math operations for them. Rationals can also interact with integers and floats. Actually this library expands existing functions, so they can work with rationals too. Number operations available:
* addition
* subtraction
* multiplication
* division
* power
## Some examples
iex> use Rational
Kernel
iex> ~n(2/12)
2.0/12.0
iex> ~n(1/4) * ~n(2/3)
1/6
iex> ~n(1/6) + ~n(4/7)
31/42
iex> ~n(7/9) ** 2
49/81
iex> ~n(33/7) - 5
-2/7
"""
defmacro __using__(_opts) do
quote do
import Rational
import RationalMath
import Kernel, except: [+: 2, -: 2, *: 2, /: 2, **: 2]
end
end
@type rational() :: %Rational{num: number(), denom: number()}
@type operator() :: :+ | :- | :* | :/ | :**
defstruct [:num, :denom]
@doc """
Returns `true` if `term` is a rational, otherwise returns `false`.
Allowed in guard tests.
"""
@spec is_rational(term()) :: boolean()
defmacro is_rational(term) do
quote do
is_struct(unquote(term)) and
:erlang.is_map_key(:num, unquote(term)) and
:erlang.is_map_key(:denom, unquote(term))
end
end
@doc """
Handles the sigil `~n` for rationals.
It returns a `t:rational/0` number.
## Examples
iex> ~n(1/4)
1.0/4.0
iex> ~n(-3.1/5)
-3.1/5.0
"""
@spec sigil_n(String.t(), list()) :: rational()
def sigil_n(string, _) do
[a, b] =
String.split(string, "/")
|> Enum.map(fn x ->
{i, _} = Float.parse(x)
i
end)
%Rational{num: a, denom: b}
end
defp gcd(a, 0), do: abs(a)
defp gcd(a, b), do: gcd(b, rem(a, b))
@spec op(number(), number(), operator()) :: number()
def op(a, b, op) when is_number(a) and is_number(b) do
{res, _} =
[a, op, b]
|> Enum.join()
|> Code.eval_string()
res
end
@spec op(number(), rational(), operator()) :: rational() | number()
def op(a, b, op) when is_number(a) and is_rational(b) do
case op do
:+ ->
{a * b.denom + b.num, b.denom}
:- ->
{a * b.denom - b.num, b.denom}
:* ->
{a * b.num, b.denom}
:/ ->
{a * b.denom, b.num}
:** ->
{a ** (b.num / b.denom), 1}
end
|> result()
end
@spec op(rational(), number(), operator()) :: rational() | number()
def op(a, b, op) when is_rational(a) and is_number(b) do
case op do
:+ ->
{b * a.denom + a.num, a.denom}
:- ->
{a.num - b * a.denom, a.denom}
:* ->
{b * a.num, a.denom}
:/ ->
{a.num, a.denom * b}
:** ->
{a.num ** b, a.denom ** b}
end
|> result()
end
@spec op(rational(), rational(), operator()) :: rational() | number()
def op(a, b, op) when is_rational(a) and is_rational(b) do
case op do
:+ ->
{a.num * b.denom + b.num * a.denom, a.denom * b.denom}
:- ->
{a.num * b.denom - b.num * a.denom, a.denom * b.denom}
:* ->
{a.num * b.num, a.denom * b.denom}
:/ ->
{a.num * b.denom, a.denom * b.num}
:** ->
{a.num ** (b.num / b.denom), a.denom ** (b.num / b.denom)}
end
|> result()
end
defp result({num, denom}) do
cond do
num == denom ->
1
denom == 1 ->
num
num == 0 ->
0
is_float(num) or is_float(denom) ->
cond do
trunc(num) == num && trunc(denom) == denom ->
{num, denom} = {trunc(num), trunc(denom)}
g = gcd(num, denom)
%Rational{
num: div(num, g),
denom: div(denom, g)
}
true ->
%Rational{
num: num,
denom: denom
}
end
true ->
g = gcd(num, denom)
%Rational{
num: div(num, g),
denom: div(denom, g)
}
end
end
end