# OpenAI
Access GPT models including standard chat models and reasoning models (o1, o3, GPT-5).
## Configuration
```bash
OPENAI_API_KEY=sk-...
```
## Dual API Architecture
OpenAI provider automatically routes between two APIs based on model metadata:
- **Chat Completions API**: Standard GPT models (gpt-4o, gpt-4-turbo, gpt-3.5-turbo)
- **Responses API**: Reasoning models (o1, o3, o4-mini, gpt-5) with extended thinking
## Provider Options
Passed via `:provider_options` keyword:
### `max_completion_tokens`
- **Type**: Integer
- **Purpose**: Required for reasoning models (o1, o3, gpt-5)
- **Note**: ReqLLM auto-translates `max_tokens` to `max_completion_tokens` for reasoning models
- **Example**: `provider_options: [max_completion_tokens: 4000]`
### `openai_structured_output_mode`
- **Type**: `:auto` | `:json_schema` | `:tool_strict`
- **Default**: `:auto`
- **Purpose**: Control structured output strategy
- **`:auto`**: Use json_schema when supported, else strict tools
- **`:json_schema`**: Force response_format with json_schema
- **`:tool_strict`**: Force strict: true on function tools
- **Example**: `provider_options: [openai_structured_output_mode: :json_schema]`
### `response_format`
- **Type**: Map
- **Purpose**: Custom response format configuration
- **Example**:
```elixir
provider_options: [
response_format: %{
type: "json_schema",
json_schema: %{
name: "person",
schema: %{type: "object", properties: %{name: %{type: "string"}}}
}
}
]
```
### `openai_parallel_tool_calls`
- **Type**: Boolean | nil
- **Default**: `nil`
- **Purpose**: Override parallel tool call behavior
- **Example**: `provider_options: [openai_parallel_tool_calls: false]`
### `reasoning_effort`
- **Type**: `:minimal` | `:low` | `:medium` | `:high`
- **Purpose**: Control reasoning effort (Responses API only)
- **Example**: `provider_options: [reasoning_effort: :high]`
### `seed`
- **Type**: Integer
- **Purpose**: Set seed for reproducible outputs
- **Example**: `provider_options: [seed: 42]`
### `logprobs`
- **Type**: Boolean
- **Purpose**: Request log probabilities
- **Example**: `provider_options: [logprobs: true, top_logprobs: 3]`
### `top_logprobs`
- **Type**: Integer (1-20)
- **Purpose**: Number of log probabilities to return
- **Requires**: `logprobs: true`
- **Example**: `provider_options: [logprobs: true, top_logprobs: 5]`
### `user`
- **Type**: String
- **Purpose**: Track usage by user identifier
- **Example**: `provider_options: [user: "user_123"]`
### Embedding Options
#### `dimensions`
- **Type**: Positive integer
- **Purpose**: Control embedding dimensions (model-specific ranges)
- **Example**: `provider_options: [dimensions: 512]`
#### `encoding_format`
- **Type**: `"float"` | `"base64"`
- **Purpose**: Format for embedding output
- **Example**: `provider_options: [encoding_format: "base64"]`
### Responses API Resume Flow
#### `previous_response_id`
- **Type**: String
- **Purpose**: Resume tool calling flow from previous response
- **Example**: `provider_options: [previous_response_id: "resp_abc123"]`
#### `tool_outputs`
- **Type**: List of `%{call_id, output}` maps
- **Purpose**: Provide tool execution results for resume flow
- **Example**: `provider_options: [tool_outputs: [%{call_id: "call_1", output: "result"}]]`
## Usage Metrics
OpenAI provides comprehensive usage data including:
- `reasoning_tokens` - For reasoning models (o1, o3, gpt-5)
- `cached_tokens` - Cached input tokens
- Standard input/output/total tokens and costs
## Resources
- [OpenAI API Documentation](https://platform.openai.com/docs/api-reference)
- [Model Overview](https://platform.openai.com/docs/models)