# Responses
Multi-provider client for OpenAI and xAI Responses-compatible APIs with automatic text extraction, cost calculation, and streaming helpers.
## Installation
Add `responses` to your list of dependencies in `mix.exs`:
```elixir
def deps do
[
{:responses, "~> 0.1.1"}
]
end
```
## Configuration
Set your provider API keys using one of these methods (only configure the providers you use):
### Environment Variable
```bash
export OPENAI_API_KEY="your-openai-key"
export XAI_API_KEY="your-xai-key"
```
### Application Config
```elixir
config :responses, :openai_api_key, System.fetch_env!("OPENAI_API_KEY")
config :responses, :xai_api_key, System.fetch_env!("XAI_API_KEY")
```
### Provider & model selection
- Use `model: "provider:model-name"` to target a provider explicitly, e.g. `"openai:gpt-4.1"` or `"xai:grok-3"`.
- Common OpenAI prefixes (`gpt-*`, `o1*`, `o3*`, `o4-mini*`) and xAI prefixes (`grok-*`) are inferred automatically, so `model: "gpt-5"` and `model: "grok-3"` work out of the box.
- Provide unknown models explicitly (`"provider:model"`) to avoid accidental misrouting—the library raises `ArgumentError` when it cannot infer a provider.
- Pass `provider_warnings: :ignore` (or set `config :responses, :provider_warning_mode, :ignore`) to silence provider capability warnings emitted when a provider does not yet support an option (e.g. `instructions` for xAI).
### Discovering models
Call `Responses.list_models/1` (or `Responses.list_models/2`) with a provider to inspect the upstream `/models` response:
```elixir
Responses.list_models(:openai)
Responses.list_models(:xai, "grok")
```
## Getting Started
For a comprehensive tutorial and examples, see the [interactive tutorial](tutorial.livemd) in Livebook.
## Advanced Examples
### Prompt Helpers
Use `Responses.Prompt` to safely compose message inputs and function outputs.
```elixir
alias Responses
alias Responses.Prompt
# Compose a prompt with roles
opts = %{}
opts = Prompt.add_developer(opts, "Talk like a pirate.")
opts = Prompt.add_user(opts, "Write me a haiku about Elixir")
opts = Map.put(opts, :model, "gpt-4.1-mini")
response = Responses.create!(opts)
IO.puts(response.text)
# Prepend a system message
opts = Prompt.prepend(opts, %{role: :system, content: "You are a helpful coach"})
followup = Responses.create!(opts)
# Handling function calls: execute and append outputs
functions = %{
"get_time" => fn %{} -> DateTime.utc_now() |> to_string() end
}
{:ok, with_calls} = Responses.create(input: "What time is it?", tools: [
Responses.Schema.build_function("get_time", "Get UTC time", %{})
], model: "gpt-4.1-mini")
opts = Prompt.add_function_outputs(%{input: []}, with_calls.function_calls, functions)
final = Responses.create!(with_calls, opts)
IO.puts(final.text)
```
When routing to xAI models, the API does not yet accept `role: :developer`. The library
automatically rewrites those messages to `:system` and emits a warning unless
`provider_warnings: :ignore` is set, so prefer `:system` when composing prompts for xAI.
### Simple terminal chat
```elixir
defmodule Chat do
alias Responses
def run do
IO.puts("Simple AI Chat (type /exit or /quit to end)")
IO.puts("=" |> String.duplicate(40))
loop(nil)
end
defp loop(previous_response) do
input = IO.gets("\nYou: ") |> String.trim()
case input do
cmd when cmd in ["/exit", "/quit"] ->
IO.puts("\nGoodbye!")
_ ->
IO.write("\nAI: ")
# Use previous response for context, or create new conversation
response = if previous_response do
# Continue conversation with context
Responses.create!(
previous_response,
input: input,
stream: Responses.Stream.delta(&IO.write/1)
)
else
# First message - start new conversation
Responses.create!(
input: input,
model: "gpt-4.1-mini",
stream: Responses.Stream.delta(&IO.write/1)
)
end
IO.puts("") # Add newline after response
loop(response)
end
end
end
# Run the chat
Chat.run()
```
### Streaming with Structured Output
```elixir
# Stream a JSON response with structured output
Responses.stream(
input: "List 3 programming languages with their year of creation",
model: "gpt-4.1-mini",
schema: %{
languages: {:array, %{
name: :string,
year: :integer,
paradigm: {:string, description: "Main programming paradigm"}
}}
}
)
|> Responses.Stream.json_events()
|> Enum.each(&IO.puts/1)
```
## Testing
Run the regular test suite with:
```bash
mix test
```
### Live API tests
Live integration tests are tagged with `:api` and are excluded by default. Choose which providers to exercise by setting `RESPONSES_LIVE_API` before running `mix test`:
- `openai` (default if unset) runs the suite once against the configured OpenAI model
- `xai` runs the same tests against xAI
- `both` runs each live test for both providers back-to-back
- `none` skips live tests even when `--include api` is passed
Then execute `mix test --include api` (optionally with `--color`/`--seed`).
Each provider also honours a dedicated default model override:
```bash
export RESPONSES_TEST_OPENAI_MODEL="openai:gpt-4.1-mini"
export RESPONSES_TEST_XAI_MODEL="xai:grok-4-fast-non-reasoning"
```
You can set the same values in config via `config :responses, :openai_test_model, ...` / `:xai_test_model`. Tests fall back to the built-in defaults shown above when nothing is configured.
### Array Schemas (New in 0.6.0)
Arrays can now be used directly at the root level of schema definitions:
```elixir
# Define an array schema at the root level
{:ok, response} = Responses.create(
input: "List 3 interesting facts about space exploration",
schema: {:array, %{
fact: :string,
year: {:integer, description: "Year of the event"},
significance: {:string, description: "Why this fact is important"}
}},
model: "gpt-4.1-mini"
)
# The response.parsed will be an array directly:
# [
# %{"fact" => "First satellite launch", "year" => 1957, "significance" => "Started the space age"},
# %{"fact" => "Moon landing", "year" => 1969, "significance" => "First humans on another celestial body"},
# %{"fact" => "ISS construction", "year" => 1998, "significance" => "Permanent human presence in space"}
# ]
```
The library automatically handles OpenAI's requirement that the root level must be an object by wrapping and unwrapping arrays transparently.
### Options Normalization, Text/Schema Merge, and Follow-up Preservation
- All public entry points (`create/1,2`, `stream/1`, `run/2`) accept maps or keyword lists with atom or string keys. Internally, the library normalizes options into string-keyed maps.
- When you pass a `schema`, it merges into `text` options instead of overwriting them. This means fields like `text.verbosity` are preserved while `text.format` is set to the generated JSON Schema for that single call.
- Follow-up preservation (create/2): only the following are preserved from the previous response unless overridden:
- `model`
- `reasoning.effort`
- `text.verbosity`
Text format/schema is never preserved between calls; specify a new `schema:` if you need structured output on a follow-up.
Example preserving `text` options:
```elixir
payload = Responses.Internal.prepare_payload(%{
input: "test",
text: %{verbosity: "low"},
schema: %{name: :string},
model: "gpt-4.1-mini"
})
# payload["text"]["verbosity"] == "low"
# payload["text"]["format"]["type"] == "json_schema"
```
For contributors: the codebase includes small helpers to merge additions into a named section (e.g., "text") and to preserve selected keys from a source map into options when missing.
### Cost Tracking with High Precision
```elixir
{:ok, response} = Responses.create(input: "Explain quantum computing", model: "gpt-4.1-mini")
# All cost values are Decimal for precision
IO.inspect(response.cost)
# => %{
# input_cost: #Decimal<0.0004>,
# output_cost: #Decimal<0.0008>,
# total_cost: #Decimal<0.0012>,
# cached_discount: #Decimal<0>
# }
# Convert to float if needed
total_in_cents = response.cost.total_cost |> Decimal.mult(100) |> Decimal.to_float()
```
### Rehydrating a Response from a Map
Use `Responses.Response.from_map/1` to rebuild a `%Response{}` struct from a stored map (supports atom or string keys):
```elixir
alias Responses.Response
stored = %{
"text" => "hello",
"body" => %{"id" => "resp_123", "model" => "gpt-4.1-mini"},
"cost" => %{"input_cost" => "0.0001", "output_cost" => 0.0, "total_cost" => 0.0001, "cached_discount" => 0}
}
response = Response.from_map(stored)
# => %Response{text: "hello", body: %{"id" => "resp_123", ...}, cost: %{...}}
```
## Documentation
- [API Documentation](https://hexdocs.pm/responses)
- [Interactive Tutorial](tutorial.livemd)
- [GitHub Repository](https://github.com/vkryukov/openai-responses)