# Copyright 2018 - 2022, Mathijs Saey, Vrije Universiteit Brussel
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
defmodule Skitter.DSL.Component do
@moduledoc """
Callback and Component definition DSL.
This module offers macros to define component modules and callbacks. Please refer to the
documentation of `defcomponent/3`.
"""
alias Skitter.DSL.AST
alias Skitter.{Component.Callback.Info, DefinitionError}
# --------- #
# Component #
# --------- #
@doc """
Defines the initial state of a component.
This macro is used to define the initial state of a component. This state is passed to every
called callback when no state is provided by the component's strategy. When this macro is not
used, the initial state of a component is `nil`.
Internally, this macro generates a definition of
`c:Skitter.Component._sk_component_initial_state/0`.
## Examples
```
defcomponent NoStateExample do
defcb return_state, do: state()
end
defcomponent StateExample do
state 0
defcb return_state, do: state()
end
```
iex> Component.initial_state(NoStateExample)
nil
iex> Component.initial_state(StateExample)
0
iex> Component.call(NoStateExample, :return_state, []).state
nil
iex> Component.call(StateExample, :return_state, []).state
0
iex> Component.call(NoStateExample, :return_state, :some_state, nil, []).state
:some_state
iex> Component.call(StateExample, :return_state, :some_state, nil, []).state
:some_state
"""
defmacro state(initial_state) do
quote do
@impl true
def _sk_component_initial_state, do: unquote(initial_state)
end
end
@doc """
Creates an initial struct-based state for a component.
In Elixir, it is common to use a struct to store structured information. Therefore, when a
component manages a complex state, it often defines a struct and uses this struct as the initial
state of the component. Afterwards, the state of the component is updated when it reacts to
incoming data:
```
defcomponent Average, in: value, out: current do
defstruct [total: 0, count: 0]
state %__MODULE__{}
defcb react(val) do
state <~ %{state() | count: state().count + 1}
state <~ %{state() | total: state().total + val}
state().total / state().count ~> current
end
end
```
In order to streamline the use of this pattern, this macro defines a struct and uses this struct
as the initial state of the component. Moreover, the `sigil_f/2` and `~>/2` macros are designed
to be used with structs, enabling them to read the state and update it:
```
defcomponent Average, in: value, out: current do
state_struct total: 0, count: 0
defcb react(val) do
count <~ ~f{count} + 1
total <~ ~f{total} + val
~f{total} / ~f{count} ~> current
end
end
```
The second example generates the code shown in the first example.
## Examples
iex> Component.initial_state(Average)
%Average{total: 0, count: 0}
"""
defmacro state_struct(fields) do
quote do
defstruct unquote(fields)
state %__MODULE__{}
end
end
@doc """
Define a component module.
This macro is used to define a component module. Using this macro, a component can be defined
similar to a normal module. The macro will enable the use of `defcb/2` and provides
implementations for `c:Skitter.Component._sk_component_info/1`,
`c:Skitter.Component._sk_component_initial_state/0`, `c:Skitter.Component._sk_callbacks/0`
and `c:Skitter.Component._sk_callback_info/2`.
## Component strategy and ports
The component Strategy and its in -and out ports can be defined in the header of the component
declaration as follows:
iex> defcomponent SignatureExample, in: [a, b, c], out: [y, z], strategy: SomeStrategy do
...> end
iex> Component.strategy(SignatureExample)
SomeStrategy
iex> Component.in_ports(SignatureExample)
[:a, :b, :c]
iex> Component.out_ports(SignatureExample)
[:y, :z]
If a component has no `in`, or `out` ports, they can be omitted from the component's header.
Furthermore, if the component only has a single `in` or `out` port, the list notation can be
omitted:
iex> defcomponent PortExample, in: a do
...> end
iex> Component.in_ports(PortExample)
[:a]
iex> Component.out_ports(PortExample)
[]
The strategy may be omitted. In this case, a strategy _must_ be provided when the defined
component is embedded inside a workflow. If this is not done, an error will be raised when the
workflow is deployed.
## Examples
```
defcomponent Average, in: value, out: current do
state_struct total: 0, count: 0
defcb react(value) do
total <~ ~f{total} + value
count <~ ~f{count} + 1
~f{total} / ~f{count} ~> current
end
end
```
iex> Component.in_ports(Average)
[:value]
iex> Component.out_ports(Average)
[:current]
iex> Component.strategy(Average)
nil
iex> Component.call(Average, :react, [10])
%Result{result: nil, emit: [current: [10.0]], state: %Average{count: 1, total: 10}}
iex> Component.call(Average, :react, %Average{count: 1, total: 10}, nil, [10])
%Result{result: nil, emit: [current: [10.0]], state: %Average{count: 2, total: 20}}
## Documentation
When writing documentation for a component, `@componentdoc` can be used instead of the usual
`@moduledoc`. When this is done, this macro will automatically add additional information about
the component to the generated documentation.
"""
defmacro defcomponent(name, opts \\ [], do: body) do
in_ = opts |> Keyword.get(:in, []) |> AST.names_to_atoms()
out = opts |> Keyword.get(:out, []) |> AST.names_to_atoms()
strategy = opts |> Keyword.get(:strategy) |> read_strategy(__CALLER__)
quote do
defmodule unquote(name) do
@behaviour Skitter.Component
import unquote(__MODULE__), only: [state: 1, state_struct: 1, defcb: 2]
@before_compile {unquote(__MODULE__), :generate_callbacks}
@before_compile {unquote(__MODULE__), :generate_moduledoc}
Module.register_attribute(__MODULE__, :_sk_callbacks, accumulate: true)
@_sk_strategy unquote(strategy)
@_sk_in_ports unquote(in_)
@_sk_out_ports unquote(out)
@impl true
def _sk_component_initial_state, do: nil
defoverridable _sk_component_initial_state: 0
unquote(body)
end
end
end
defp read_strategy(mod, env) do
case Macro.expand(mod, env) do
mod when is_atom(mod) -> mod
any -> DefinitionError.inject("Invalid strategy: `#{inspect(any)}`", env)
end
end
@doc false
# generate component behaviour callbacks
defmacro generate_callbacks(env) do
names = env.module |> _info_before_compile() |> Map.keys()
metadata = env.module |> _info_before_compile() |> Macro.escape()
state =
case Module.get_attribute(env.module, :_sk_initial_state) do
:_sk_gen_struct -> quote(do: %__MODULE__{}) |> Macro.escape()
any -> any
end
quote bind_quoted: [names: names, metadata: metadata, state: state] do
@impl true
def _sk_component_info(:strategy), do: @_sk_strategy
def _sk_component_info(:in_ports), do: @_sk_in_ports
def _sk_component_info(:out_ports), do: @_sk_out_ports
@impl true
def _sk_callbacks, do: unquote(names |> MapSet.new() |> Macro.escape())
# Prevent a warning if no callbacks are defined
@impl true
def _sk_callback_info(nil, 0), do: %Skitter.Component.Callback.Info{}
for {{name, arity}, info} <- metadata do
def _sk_callback_info(unquote(name), unquote(arity)), do: unquote(Macro.escape(info))
end
end
end
defmacro generate_moduledoc(env) do
mod = env.module
in_ports = Module.get_attribute(mod, :_sk_in_ports) |> Enum.join(", ") |> wrap_value()
out_ports = Module.get_attribute(mod, :_sk_out_ports) |> Enum.join(", ") |> wrap_value()
strategy = Module.get_attribute(mod, :_sk_strategy) |> wrap_value()
if Module.has_attribute?(mod, :componentdoc) do
quote do
@moduledoc """
#{@componentdoc}
## Component Properties
* in ports: #{unquote(in_ports)}
* out ports: #{unquote(out_ports)}
* default strategy: #{unquote(strategy)}
"""
end
end
end
defp wrap_value(""), do: "none"
defp wrap_value(nil), do: "none"
defp wrap_value(str) when is_binary(str), do: "`#{str}`"
defp wrap_value(mod) when is_atom(mod) do
mod |> Module.split() |> Enum.join(".") |> wrap_value()
end
# --------- #
# Callbacks #
# --------- #
# Private / Hidden Helpers
# ------------------------
@doc false
# Gets the callback info before generate_callback_info/1 is called.
def _info_before_compile(module) do
module
|> Module.get_attribute(:_sk_callbacks)
|> Enum.reduce(%{}, fn {{name, arity}, info}, map ->
Map.update(map, {name, arity}, info, fn s = %Info{} ->
%{
s
| read?: s.read? or info.read?,
write?: s.write? or info.write?,
emit?: s.emit? or info.emit?
}
end)
end)
end
# Extract calls to a certain operator from the AST
defp extract(body, verify) do
body
|> Macro.prewalk(MapSet.new(), fn
node, acc -> if el = verify.(node), do: {node, MapSet.put(acc, el)}, else: {node, acc}
end)
|> elem(1)
|> Enum.to_list()
end
defp extract_not_empty?(body, verify) do
body |> extract(verify) |> Enum.empty?() |> Kernel.not()
end
# Config
# ------
@doc false
def config_var, do: quote(do: var!(config, unquote(__MODULE__)))
@doc """
Obtain the component configuration.
This macro reads the current value of the configuration passed to the component callback when
it was called. It should only be used inside the body of `defcb/2`.
## Examples
```
defcomponent ConfigExample do
defcb read(), do: config()
end
```
iex> Component.call(ConfigExample, :read, []).result
nil
iex> Component.call(ConfigExample, :read, :config, []).result
:config
iex> Component.call(ConfigExample, :read, :state, :config, []).result
:config
"""
defmacro config, do: quote(do: unquote(config_var()))
# State
# -----
@doc false
def state_var, do: quote(do: var!(state, unquote(__MODULE__)))
@doc """
Obtain the current state.
This macro reads the current value of the state passed to the component callback when it was
called. It should only be used inside the body of `defcb/2`.
## Examples
```
defcomponent ReadExample do
state 0
defcb read(), do: state()
end
```
iex> Component.call(ReadExample, :read, []).result
0
iex> Component.call(ReadExample, :read, :state, nil, []).result
:state
iex> Component.call(ReadExample, :read, :state, nil, []).result
:state
"""
defmacro state, do: quote(do: unquote(state_var()))
@doc """
Read the current value of a field stored in state.
This macro expects that the current component state is a struct (i.e. it expects a component
that uses `state_struct/1`), and reads the current value of `field` from the struct.
This macro should only be used inside the body of `defcb/2`.
## Examples
```
defcomponent FieldReadExample do
state_struct field: nil
defcb read(), do: ~f{field}
end
```
iex> Component.call(FieldReadExample, :read, %FieldReadExample{field: 5}, nil, []).result
5
iex> Component.call(FieldReadExample, :read, %FieldReadExample{field: :foo}, nil, []).result
:foo
"""
defmacro sigil_f({:<<>>, _, [str]}, _) do
field = str |> String.to_existing_atom()
quote(do: Map.fetch!(unquote(state_var()), unquote(field)))
end
@doc """
Updates the current state.
This macro should only be used inside the body of `defcb/2`. It updates the current value of the
component state to the provided value.
This macro can be used in two ways: it can be used to update the component state or a field of
the component state. The latter option can only be used if the state of the component is a
struct (i.e. if the intial state has been defined using `state_struct/1`). The former options
modifies the component state as a whole, the second option only modifies the value of the
provided field stored in the component state.
## Examples
```
defcomponent WriteExample do
defcb write(), do: state <~ :foo
end
```
iex> Component.call(WriteExample, :write, nil, nil, []).state
:foo
```
defcomponent FieldWriteExample do
state_struct [:field]
defcb write(), do: field <~ :bar
end
```
iex> Component.call(FieldWriteExample, :write, %FieldWriteExample{field: :foo}, nil, []).state.field
:bar
```
defcomponent WrongFieldWriteExample do
fields [:field]
defcb write(), do: doesnotexist <~ :bar
end
```
iex> Component.call(WrongFieldWriteExample, :write, %WrongFieldWriteExample{field: :foo}, nil, [])
** (KeyError) key :doesnotexist not found in: %Skitter.DSL.ComponentTest.WrongFieldWriteExample{field: :foo}
"""
defmacro {:state, _, _} <~ value do
quote do
unquote(state_var()) = unquote(value)
nil
end
end
defmacro {field, _, _} <~ value when is_atom(field) do
quote do
state <~ Map.replace!(state(), unquote(field), unquote(value))
end
end
defp read?(body) do
extract_not_empty?(body, fn
quote(do: state()) -> true
{:sigil_f, _env, [{:<<>>, _, [_]}, _]} -> true
_ -> false
end)
end
@doc false
def write?(body) do
extract_not_empty?(body, fn
{:<~, _env, [{name, _, _}, _]} -> name
_ -> false
end)
end
# Emit
# ----
@doc false
def emit_var, do: quote(do: var!(emit, unquote(__MODULE__)))
@doc """
Emit `value` to `port`
This macro is used to specify `value` should be emitted on `port`. This means that `value`
will be sent to any components downstream of the current component. This macro should only be
used inside the body of `defcb/2`. If a previous value was specified for `port`, it is
overridden.
## Examples
```
defcomponent SingleEmitExample do
defcb emit(value) do
value ~> some_port
:foo ~> some_other_port
end
end
```
iex> Component.call(SingleEmitExample, :emit, [:bar]).emit
[some_other_port: [:foo], some_port: [:bar]]
"""
defmacro value ~> {port, _, _} when is_atom(port) do
quote do
unquote(emit_var()) = Keyword.put(unquote(emit_var()), unquote(port), [unquote(value)])
nil
end
end
@doc """
Emit several values to `port`
This macro works like `~>/2`, but emits several output values to the port instead of a single
value. Each value in the provided `t:Enumerable.t/0` will be sent to downstream components
individually.
## Examples
```
defcomponent MultiEmitExample do
defcb emit(value) do
value ~> some_port
[:foo, :bar] ~>> some_other_port
end
end
```
iex> Component.call(MultiEmitExample, :emit, [:bar]).emit
[some_other_port: [:foo, :bar], some_port: [:bar]]
"""
defmacro enum ~>> {port, _, _} when is_atom(port) do
quote do
unquote(emit_var()) = Keyword.put(unquote(emit_var()), unquote(port), unquote(enum))
nil
end
end
@doc false
def emit?(body) do
extract_not_empty?(body, fn
{:~>, _env, [_, {_, _, _}]} -> true
{:~>>, _env, [_, {_, _, _}]} -> true
_ -> false
end)
end
# defcallback
# -----------
@doc """
Define a callback.
This macro is used to define a callback function. Using this macro, a callback can be defined
similar to a regular procedure. Inside the body of the procedure, `~>/2`, `~>>/2` `<~/2` and
`sigil_f/2` can be used to access the state and to emit output. The macro ensures:
- The function returns a `t:Skitter.Component.result/0` with the correct state (as updated by
`<~/2`), emit (as updated by `~>/2` and `~>>/2`) and result (which contains the value of the
last expression in `body`).
- `c:Skitter.Component._sk_callback_info/2` and `c:Skitter.Callback._sk_callbacks/0` of the
component module contains the required information about the defined callback.
Note that, under the hood, `defcb/2` generates a regular elixir function. Therefore, pattern
matching may still be used in the argument list of the callback. Attributes such as `@doc` may
also be used as usual.
## Examples
```
defcomponent CbExample do
defcb simple(), do: nil
defcb arguments(arg1, arg2), do: arg1 + arg2
defcb state(), do: counter <~ (~f{counter} + 1)
defcb emit_single(), do: ~D[1991-12-08] ~> out_port
defcb emit_multi(), do: [~D[1991-12-08], ~D[2021-07-08]] ~>> out_port
end
```
iex> Component.callbacks(CbExample)
#MapSet<[arguments: 2, emit_multi: 0, emit_single: 0, simple: 0, state: 0]>
iex> Component.callback_info(CbExample, :simple, 0)
%Info{read?: false, write?: false, emit?: false}
iex> Component.callback_info(CbExample, :arguments, 2)
%Info{read?: false, write?: false, emit?: false}
iex> Component.callback_info(CbExample, :state, 0)
%Info{read?: true, write?: true, emit?: false}
iex> Component.callback_info(CbExample, :emit_single, 0)
%Info{read?: false, write?: false, emit?: true}
iex> Component.callback_info(CbExample, :emit_multi, 0)
%Info{read?: false, write?: false, emit?: true}
iex> Component.call(CbExample, :simple, %{}, nil, [])
%Result{result: nil, emit: [], state: %{}}
iex> Component.call(CbExample, :arguments, %{}, nil, [10, 20])
%Result{result: 30, emit: [], state: %{}}
iex> Component.call(CbExample, :state, %{counter: 10, other: :foo}, nil, [])
%Result{result: nil, emit: [], state: %{counter: 11, other: :foo}}
iex> Component.call(CbExample, :emit_single, %{}, nil, [])
%Result{result: nil, emit: [out_port: [~D[1991-12-08]]], state: %{}}
iex> Component.call(CbExample, :emit_multi, %{}, nil, [])
%Result{result: nil, emit: [out_port: [~D[1991-12-08], ~D[2021-07-08]]], state: %{}}
"""
defmacro defcb(signature, do: body) do
body = __MODULE__.ControlFlowOperators.rewrite_special_forms(body)
{name, args} = Macro.decompose_call(signature)
arity = length(args)
info = %Info{read?: read?(body), write?: write?(body), emit?: emit?(body)} |> Macro.escape()
quote do
@doc false
@_sk_callbacks {{unquote(name), unquote(arity)}, unquote(info)}
def unquote(name)(unquote(state_var()), unquote(config_var()), unquote_splicing(args)) do
import unquote(__MODULE__), only: [state: 0, config: 0, sigil_f: 2, ~>: 2, ~>>: 2, <~: 2]
use unquote(__MODULE__.ControlFlowOperators)
unquote(emit_var()) = []
result = unquote(body)
%Skitter.Component.Callback.Result{
result: result,
state: unquote(state_var()),
emit: unquote(emit_var())
}
end
end
end
end