lib/math/functions.ex

defmodule Statistics.Math.Functions do
  alias Statistics.Math

  @doc """
  The Gamma function

  This implementation uses the [Lanczos approximation](http://en.wikipedia.org/wiki/Lanczos_approximation)

  ## Examples

      iex> Statistics.Math.Functions.gamma(0.5)
      1.7724538509055159

  """
  @spec gamma(number) :: number
  def gamma(x) do
    gamma_lanczos(x)
    # gamma_taylor(x)
  end

  defp gamma_lanczos(x) do
    # coefficients used by the GNU Scientific Library
    g = 7

    p = [
      0.99999999999980993,
      676.5203681218851,
      -1259.1392167224028,
      771.32342877765313,
      -176.61502916214059,
      12.507343278686905,
      -0.13857109526572012,
      9.9843695780195716e-6,
      1.5056327351493116e-7
    ]

    # recursive formula
    if x < 0.5 do
      Math.pi() / (:math.sin(Math.pi() * x) * gamma_lanczos(1 - x))
    else
      z = x - 1
      xs = for i <- 1..8, do: Enum.at(p, i) / (z + i)
      x = Enum.at(p, 0) + Enum.sum(xs)
      t = z + g + 0.5
      Math.sqrt(2 * Math.pi()) * Math.pow(t, z + 0.5) * Math.exp(-1 * t) * x
    end
  end

  @doc """
  The Beta function

  ## Examples

      iex> Statistics.Math.Functions.beta(2, 0.5)
      1.3333333333333324

  """
  @spec beta(number, number) :: number
  def beta(x, y) do
    # from https://en.wikipedia.org/wiki/Beta_function#Properties
    gamma(x) * gamma(y) / gamma(x + y)
  end

  @doc """
  The 'error' function

  Formula 7.1.26 given in Abramowitz and Stegun.
  Formula appears as 1 – (a1t1 + a2t2 + a3t3 + a4t4 + a5t5)exp(-x2)

  """
  # Some wisdom in Horner's Method of coding polynomials:
  #  - We could evaluate a polynomial of the form a + bx + cx^2 + dx^3 by coding as a + b*x + c*x*x + d*x*x*x.
  #  - But we can save computational power by coding it as ((d*x + c)*x + b)*x + a.
  #  - The formula below was coded this way bringing down the complexity of this algorithm from O(n2) to O(n).''
  @spec erf(number) :: number
  def erf(x) do
    # constants
    {a1, a2, a3, a4, a5} = {0.254829592, -0.284496736, 1.421413741, -1.453152027, 1.061405429}
    p = 0.3275911

    # Save the sign of x
    sign = if x < 0, do: -1, else: 1
    x = abs(x)

    # Formula 7.1.26 given in Abramowitz and Stegun.
    t = 1.0 / (1.0 + p * x)
    y = 1.0 - ((((a5 * t + a4) * t + a3) * t + a2) * t + a1) * t * Math.pow(Math.e(), -x * x)

    sign * y
  end

  @doc """
  The  inverse 'error' function
  """
  @spec inv_erf(number) :: number
  def inv_erf(x) do
    # constants
    {c0, c1, c2} = {2.515517, 0.802853, 0.010328}
    {d0, d1, d2} = {1.432788, 0.189269, 0.001308}
    # formula
    x - ((c2 * x + c1) * x + c0) / (((d2 * x + d1) * x + d0) * x + 1.0)
  end

  @doc """
  Lower incomplete Gamma function

  ## Examples

      iex> Statistics.Math.Functions.gammainc(1,1)
      0.63212055882855778

  """
  # ############################
  # this simple approach adapted from
  # http://www.dreamincode.net/forums/topic/12775-statistical-functions/
  #
  # there are alternate implementation strategies to try,
  # for examples, see:
  #
  #   : https://mail.python.org/pipermail/python-list/2001-April/092498.html
  #   : http://www.dreamincode.net/forums/topic/12775-statistical-functions/
  #   : http://www.crbond.com/math.htm
  #
  # ###########################
  @spec gammainc(number, number) :: number
  def gammainc(a, x) do
    Math.pow(x, a) * Math.exp(-x) * gammainc_sum(a, x, 1 / a, 0, 1)
  end

  defp gammainc_sum(_, _, t, s, _) when t == 0.0 do
    s
  end

  defp gammainc_sum(a, x, t, s, n) do
    s = s + t
    t = t * (x / (a + n))
    gammainc_sum(a, x, t, s, n + 1)
  end

  @doc """
  Hypergeometrc 2F1 functiono

  WARNING: the implementation is incomplete, and should not be used

  """
  # from http://mhtlab.uwaterloo.ca/courses/me755/web_chap7.pdf
  @spec hyp2f1(number, number, number, number) :: number
  def hyp2f1(a, b, c, x) do
    pb = gamma(c) / gamma(a) * gamma(b)
    pa = hyp2f1_cont(a, b, c, x)
    pb * pa
  end

  defp hyp2f1_cont(a, b, c, x) do
    hyp2f1_cont(a, b, c, x, 0, 0)
  end

  defp hyp2f1_cont(_, _, _, _, n, acc) when n > 50 do
    acc
  end

  defp hyp2f1_cont(a, b, c, x, n, acc) do
    s = gamma(a + n) * gamma(b + n) / gamma(c + n)
    p = Math.pow(x, n) / Math.factorial(n)
    hyp2f1_cont(a, b, c, x, n + 1, acc + s * p)
  end

  @doc """
  Simpsons rule for numerical integration of a function

  see: http://en.wikipedia.org/wiki/Simpson's_rule

  ## Examples

      iex> Statistics.Math.Functions.simpson(fn x -> x*x*x end, 0, 20, 100000)
      40000.00000000011

  """
  @spec simpson(fun, number, number, number) :: number
  def simpson(f, a, b, n) do
    h = (b - a) / n
    s1 = f.(a) + f.(b)

    s2 =
      Stream.take_every(1..(n - 1), 2)
      |> Enum.map(fn i -> 4 * f.(a + i * h) end)
      |> Enum.sum()

    s3 =
      Stream.take_every(2..(n - 2), 2)
      |> Enum.map(fn i -> 2 * f.(a + i * h) end)
      |> Enum.sum()

    (s1 + s2 + s3) * h / 3
  end
end