# Valid

A validation library for [Gleam](https://gleam.run/).
API Docs: <https://hexdocs.pm/valid>.
This library follows the principle [Parse don't validate](https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/).
The current version (v4) contains two APIs.
The main one using pipelines. And a **experimental** one using `use`.
## API
```gleam
import valid
fn user_validator(input: InputUser) {
  use age <- valid.check(input.age, valid.int_min(13, "Should be at least 13"))
  use name <- valid.check(input.name, valid.string_is_not_empty("Missing name"))
  use email <- valid.check(input.email, valid.string_is_email("Missing email"))
  valid.ok(ValidUser(age:, name:, email:))
}
let input = InputUser(age: 14, name: "Sam", email: "sam@sample.com")
let result = input
 |> valid.validate(user_validator)
 result ==
 Ok(ValidUser(14, "Sam", "sam@sample.com"))
```
### Creating a custom validator
A validator is a function that takes an input, and returns a tuple `#(output, errors)`.
E.g.
```gleam
import valid/experimental as valid
fn is_99(input) {
  case input == 99 {
    True -> #(input, [])
    False -> #(0, ["Not 99"])
  }
}
fn validator(input) {
  use out <- valid.check(input, is_99)
  valid.ok(out)
}
```
A validator must return a default value. This is so we can collect all the errors for all validators (instead of returning early).
### Using own errors
By using your own errors you can add information to link to the source of the issue. e.g.
```gleam
type Field {
  FieldAge
  FieldName
  FieldEmail
}
fn user_validator(input: InputUser) {
  use age <- valid.check(input.age, valid.int_min(13, #(FieldAge,  "Should be at least 13")))
  use name <- valid.check(input.name, valid.string_is_not_empty(#(FieldName, "Missing name")))
  use email <- valid.check(input.email, valid.string_is_email(#(FieldEmail, "Missing email")))
  valid.ok(ValidUser(age:, name:, email:))
}
```