defmodule Vettore do
@moduledoc """
The Vettore library is designed for fast, in-memory operations on vector (embedding) data.
**All vectors (embeddings) are stored in a Rust data structure** (a `HashMap`), accessed via a shared resource
(using Rustler’s `ResourceArc` with a `Mutex`). Core operations include:
- Creating a collection :
A named set of embeddings with a fixed dimension and a chosen similarity metric (:cosine, :euclidean, :dot,
:hnsw, :binary).
- Inserting an embedding :
Add a new embedding (with ID, vector, and optional metadata) to a specific collection.
- Retrieving embeddings :
Fetch all embeddings from a collection or look up a single embedding by its unique ID.
- Similarity search :
Given a query vector, calculate a “score” for every embedding in the collection and return the top‑k results
(e.g. the smallest distances or largest similarities).
# Usage Example
db = Vettore.new()
:ok = Vettore.create_collection(db, "my_collection", 3, :euclidean)
# Insert an embedding via struct:
embedding = %Vettore.Embedding{value: "my_id or text", vector: [1.0, 2.0, 3.0], metadata: %{"note" => "hello"}}
:ok = Vettore.insert(db, "my_collection", embedding)
# Retrieve it back:
{:ok, returned_emb} = Vettore.get_by_value(db, "my_collection", "my_id")
IO.inspect(returned_emb.vector, label: "Retrieved vector")
# Perform a similarity search:
{:ok, top_results} = Vettore.similarity_search(db, "my_collection", [1.5, 1.5, 1.5], 2)
IO.inspect(top_results, label: "Top K search results")
"""
alias Vettore.{Nifs, Embedding, Validator}
import Vettore.Validator,
only: [is_db: 1, is_col: 1, is_id: 1, is_vec: 1, is_embedding: 2]
@allowed_metrics ~w(euclidean cosine dot hnsw binary)a
@doc """
Allocate an **empty in‑memory DB** (owned by Rust). Keep the returned
reference around – every other call expects it.
"""
@spec new() :: reference()
def new, do: Nifs.new_db()
@doc """
Create a collection.
* `distance` must be one of the atoms: `:euclidean`, `:cosine`, `:dot`,
`:hnsw`, or `:binary`.
# Examples
iex> Vettore.new() |> Vettore.create_collection("my_collection", 3, :euclidean)
{:ok, "my_collection"}
"""
@spec create_collection(
reference(),
String.t(),
pos_integer(),
atom(),
keyword()
) :: {:ok, String.t()} | {:error, String.t()}
def create_collection(db, name, dim, dist, opts \\ [])
def create_collection(db, name, dim, dist, opts)
when is_db(db) and is_col(name) and dim > 0 and
is_atom(dist) and dist in @allowed_metrics and is_list(opts) do
keep? = Keyword.get(opts, :keep_embeddings, true)
if is_boolean(keep?) do
Nifs.create_collection(db, name, dim, Atom.to_string(dist), keep?)
else
{:error, "invalid arguments (keep_embeddings need to be a boolean)"}
end
end
def create_collection(_, _, _, _, _),
do: {:error, "invalid arguments (see @doc for correct types)"}
@doc """
Delete a collection.
# Examples
iex> Vettore.new() |> Vettore.create_collection("my_collection", 3, :euclidean) |> Vettore.delete_collection("my_collection")
{:ok, "my_collection"}
"""
@spec delete_collection(reference(), String.t()) ::
{:ok, String.t()} | {:error, String.t()}
def delete_collection(db, name)
when is_db(db) and is_col(name) do
Nifs.delete_collection(db, name)
end
def delete_collection(_, _),
do: {:error, "invalid db reference or collection name"}
@doc """
Insert **one** `%Vettore.Embedding{}` into the collection.
Returns `{:ok, value}` on success or `{:error, reason}`.
# Examples
iex> Vettore.new() |> Vettore.create_collection("my_collection", 3, :euclidean) |> Vettore.insert("my_collection", %Vettore.Embedding{value: "my_id", vector: [1.0, 2.0, 3.0], metadata: %{"note" => "hello"}})
{:ok, "my_id"}
"""
@spec insert(reference(), String.t(), Embedding.t()) :: {:ok, String.t()} | {:error, String.t()}
def insert(db, col, %Embedding{value: val, vector: vec, metadata: meta})
when is_db(db) and is_col(col) and is_embedding(val, vec) do
with :ok <- Validator.numeric?(vec) |> ok?("vector must be numeric"),
{:ok, clean_m} <- Validator.sanitize_meta(meta) do
Nifs.insert_embedding(db, col, val, vec, clean_m)
end
end
def insert(_, _, _), do: {:error, "invalid arguments to insert/3"}
@doc """
Insert! **one** `%Vettore.Embedding{}` into the collection.
Raise error if the vector is not numeric or the metadata is invalid. Otherwise, return the inserted value.
# Examples
iex> Vettore.new() |> Vettore.create_collection("my_collection", 3, :euclidean) |> Vettore.insert!("my_collection", %Vettore.Embedding{value: "my_id", vector: [1.0, 2.0, 3.0], metadata: %{"note" => %{"hello" => "world"}}})
ArgumentError[…]
"""
@spec insert!(reference(), String.t(), Embedding.t()) ::
{:ok, String.t()} | {:error, String.t()}
def insert!(db, col, %Embedding{value: val, vector: vec, metadata: meta})
when is_db(db) and is_col(col) and is_embedding(val, vec) do
if Validator.numeric?(vec) do
Nifs.insert_embedding(db, col, val, vec, Validator.sanitize_meta!(meta))
else
raise ArgumentError, "vector must be numeric"
end
end
def insert!(_, _, _), do: raise(ArgumentError, "invalid arguments to insert/3")
@doc """
Batch‑insert a list of embeddings. Reject elements that are not `%Vettore.Embedding{}`.
Batch is faster than `insert/3` for a large number of embeddings as it avoids to validate vector list on each embedding.
# Examples
iex> Vettore.new() |> Vettore.create_collection("my_collection", 3, :euclidean) |> Vettore.batch("my_collection", [%Vettore.Embedding{value: "my_id", vector: [1.0, 2.0, 3.0], metadata: %{"note" => "hello"}}])
{:ok, ["my_id"]}
"""
@spec batch(reference(), String.t(), [Embedding.t()]) ::
{:ok, [String.t()]} | {:error, String.t()}
def batch(db, col, embs) when is_db(db) and is_col(col) and is_list(embs) do
with {:ok, tuples} <- Validator.embeddings_to_tuples(embs) do
Nifs.insert_embeddings(db, col, tuples)
end
end
def batch(_, _, _), do: {:error, "embeddings must be a list"}
@doc """
Batch‑insert a list of embeddings. Reject elements that are not `%Vettore.Embedding{}`.
Raise error if the metadata is invalid. Otherwise, return the list of inserted as in `batch/3`.
# Examples
iex> Vettore.new() |> Vettore.create_collection("my_collection", 3, :euclidean) |> Vettore.batch("my_collection", [%Vettore.Embedding{value: "my_id", vector: [1.0, 2.0, 3.0], metadata: %{"note" => [1, 2, 4]}}])
ArgumentError[…]
"""
@spec batch!(reference(), String.t(), [Embedding.t()]) ::
{:ok, [String.t()]} | {:error, String.t()}
def batch!(db, col, embs) when is_db(db) and is_col(col) and is_list(embs) do
with {:ok, tuples} <- Validator.embeddings_to_tuples!(embs) do
Nifs.insert_embeddings(db, col, tuples)
end
end
def batch!(_, _, _), do: raise(ArgumentError, "embeddings must be a list")
@doc """
Fetch a single embedding by *value (ID)* and return it as `%Vettore.Embedding{}`.
# Examples
iex> Vettore.new() |> Vettore.create_collection("my_collection", 3, :euclidean) |> Vettore.insert("my_collection", %Vettore.Embedding{value: "my_id", vector: [1.0, 2.0, 3.0], metadata: %{"note" => "hello"}}) |> Vettore.get_by_value("my_collection", "my_id")
{:ok, %Vettore.Embedding{value: "my_id", vector: [1.0, 2.0, 3.0], metadata: %{"note" => "hello"}}}
"""
@spec get_by_value(reference(), String.t(), String.t()) ::
{:ok, Embedding.t()} | {:error, String.t()}
def get_by_value(db, col, val)
when is_db(db) and is_col(col) and is_id(val) do
with {:ok, {value, vec, meta}} <- Nifs.get_embedding_by_value(db, col, val) do
{:ok, %Embedding{value: value, vector: vec, metadata: meta}}
end
end
def get_by_value(_, _, _), do: {:error, "invalid arguments to get_by_value/3"}
@doc """
Fetch a single embedding by *vector* and return it as `%Vettore.Embedding{}`.
# Examples
iex> Vettore.new() |> Vettore.create_collection("my_collection", 3, :euclidean) |> Vettore.insert("my_collection", %Vettore.Embedding{value: "my_id", vector: [1.0, 2.0, 3.0], metadata: %{"note" => "hello"}}) |> Vettore.get_by_vector("my_collection", [1.0, 2.0, 3.0])
{:ok, %Vettore.Embedding{value: "my_id", vector: [1.0, 2.0, 3.0], metadata: %{"note" => "hello"}}}
"""
@spec get_by_vector(reference(), String.t(), [number()]) ::
{:ok, Embedding.t()} | {:error, String.t()}
def get_by_vector(db, col, vector)
when is_db(db) and is_col(col) and is_vec(vector) do
with {:ok, {value, vec, meta}} <- Nifs.get_embedding_by_vector(db, col, vector) do
{:ok, %Embedding{value: value, vector: vec, metadata: meta}}
end
end
def get_by_vector(_, _, _), do: {:error, "invalid arguments to get_by_vector/3"}
@doc """
Delete a single embedding.
# Examples
iex> Vettore.new() |> Vettore.create_collection("my_collection", 3, :euclidean) |> Vettore.insert("my_collection", %Vettore.Embedding{value: "my_id", vector: [1.0, 2.0, 3.0], metadata: %{"note" => "hello"}}) |> Vettore.delete("my_collection", "my_id")
{:ok, "my_id"}
"""
@spec delete(reference(), String.t(), String.t()) :: {:ok, String.t()} | {:error, String.t()}
def delete(db, col, id)
when is_db(db) and is_col(col) and is_id(id),
do: Nifs.delete_embedding_by_value(db, col, id)
def delete(_, _, _), do: {:error, "invalid arguments to delete/3"}
@doc """
Return all embeddings in *raw* form (`{value, vector, metadata}` tuples).
# Examples
iex> Vettore.new() |> Vettore.create_collection("my_collection", 3, :euclidean) |> Vettore.insert("my_collection", %Vettore.Embedding{value: "my_id", vector: [1.0, 2.0, 3.0], metadata: %{"note" => "hello"}}) |> Vettore.get_all("my_collection")
{:ok, [{"my_id", [1.0, 2.0, 3.0], %{"note" => "hello"}}]}
"""
@spec get_all(reference(), String.t()) ::
{:ok, [{String.t(), [number()], map() | nil}]} | {:error, String.t()}
def get_all(db, col)
when is_db(db) and is_col(col),
do: Nifs.get_all_embeddings(db, col)
def get_all(_, _), do: {:error, "invalid arguments to get_all/2"}
@doc """
Similarity / nearest‑neighbour search.
Options:
* `:limit` – number of results (default **10**)
* `:filter` – metadata map; only embeddings whose metadata contains all
key‑value pairs are considered.
# Examples
iex> Vettore.new() |> Vettore.create_collection("my_collection", 3, :euclidean) |> Vettore.insert("my_collection", %Vettore.Embedding{value: "my_id", vector: [1.0, 2.0, 3.0], metadata: %{"note" => "hello"}}) |> Vettore.similarity_search("my_collection", [1.0, 2.0, 3.0], limit: 1)
{:ok, [{"my_id", 0.0}]}
"""
@spec similarity_search(reference(), String.t(), [number()], keyword()) ::
{:ok, [{String.t(), float()}]} | {:error, String.t()}
def similarity_search(db, col, query, opts \\ [])
def similarity_search(db, col, query, opts)
when is_db(db) and is_col(col) and
is_vec(query) and is_list(opts) do
limit = Keyword.get(opts, :limit, 10)
filter = Keyword.get(opts, :filter, nil)
with :ok <- validate_limit(limit),
:ok <- validate_filter(filter) do
case filter do
nil -> Nifs.similarity_search(db, col, query, limit)
f -> Nifs.similarity_search_with_filter(db, col, query, limit, f)
end
else
{:error, msg} -> {:error, msg}
end
end
def similarity_search(_, _, _, _),
do: {:error, "invalid arguments to similarity_search/4"}
@doc """
Re‑rank an existing result list with **Maximal Marginal Relevance**.
Options:
* `:limit` – desired output length (default **10**)
* `:alpha` – relevance‑diversity balance **0.0..1.0** (default **0.5**)
# Examples
iex> Vettore.new() |> Vettore.create_collection("my_collection", 3, :euclidean) |> Vettore.insert("my_collection", %Vettore.Embedding{value: "my_id", vector: [1.0, 2.0, 3.0], metadata: %{"note" => "hello"}}) |> Vettore.insert("my_collection", %Vettore.Embedding{value: "my_id2", vector: [1.0, 2.0, 3.0], metadata: %{"note" => "hello"}}) |> Vettore.insert("my_collection", %Vettore.Embedding{value: "my_id3", vector: [1.0, 2.0, 3.0], metadata: %{"note" => "hello"}}) |> Vettore.rerank("my_collection", [{"my_id", 0.0}, {"my_id2", 0.0}, {"my_id3", 0.0}], limit: 1)
{:ok, [{"my_id", 0.0}]}
"""
@spec rerank(reference(), String.t(), [{String.t(), number()}], keyword()) ::
{:ok, [{String.t(), number()}]} | {:error, String.t()}
def rerank(db, col, initial, opts \\ [])
def rerank(db, col, initial, opts)
when is_db(db) and is_col(col) and is_list(initial) and is_list(opts) do
# Validate initial list format
limit = Keyword.get(opts, :limit, 10)
alpha = Keyword.get(opts, :alpha, 0.5)
with :ok <- validate_limit(limit),
:ok <- validate_alpha(alpha),
:ok <-
Enum.all?(initial, &match?({i, s} when is_binary(i) and is_number(s), &1))
|> ok?("initial list format") do
Nifs.mmr_rerank(db, col, initial, alpha, limit)
end
end
def rerank(_, _, _, _), do: {:error, "invalid arguments to rerank/4"}
# Internal micro-validators
defp validate_limit(n) when is_integer(n) and n > 0, do: :ok
defp validate_limit(_), do: {:error, ":limit must be a positive integer"}
defp validate_alpha(a) when is_number(a) and a >= 0 and a <= 1, do: :ok
defp validate_alpha(_), do: {:error, ":alpha must be between 0.0 and 1.0"}
defp validate_filter(nil), do: :ok
defp validate_filter(f) when is_map(f), do: :ok
defp validate_filter(_), do: {:error, ":filter must be a map"}
defp ok?(true, _), do: :ok
defp ok?(false, m), do: {:error, m}
end