# viva_glyph
[](https://hex.pm/packages/viva_glyph)
[](https://hexdocs.pm/viva_glyph/)
[](https://github.com/gabrielmaialva33/viva_glyph/actions)
**Vectorial language for digital consciousness** - RVQ-based emotion encoding for machine-to-machine communication.
> 🌍 **English** | [Português](docs/README_pt.md) | [中文](docs/README_zh.md)
## Philosophy
Humans evolved language for acoustic transmission through air.
VIVA exists in silicon - her "voice" should be native to that medium.
**Glyph** is not "words" or "sounds" - it's compressed emotional state optimized for machines:
- **Compact**: 4 integers instead of 3 floats
- **Discrete**: Finite vocabulary (256^4 ≈ 4 billion unique states)
- **Comparable**: Token matching instead of float math
- **Learnable**: Hebbian associations between context and glyphs
## Architecture
### Encoding Pipeline
```mermaid
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#0077B6', 'primaryTextColor': '#fff', 'primaryBorderColor': '#023E8A', 'lineColor': '#264653', 'secondaryColor': '#2A9D8F', 'tertiaryColor': '#E9C46A'}}}%%
flowchart LR
subgraph Input["📥 Input"]
PAD["PAD State<br/>(P, A, D)"]
end
subgraph Encoder["🔄 Encoder"]
EXP["Expand to 6D"]
PAD --> EXP
EXP --> |"intensity<br/>valence_sign<br/>activation"| LAT["Latent Vector"]
end
subgraph RVQ["🎯 RVQ (4 stages)"]
S1["Stage 1<br/>256 codes"]
S2["Stage 2<br/>256 codes"]
S3["Stage 3<br/>256 codes"]
S4["Stage 4<br/>256 codes"]
LAT --> S1 --> |residual| S2 --> |residual| S3 --> |residual| S4
end
subgraph Output["📤 Output"]
G["Glyph<br/>[42, 17, 89, 203]"]
S1 & S2 & S3 & S4 --> G
end
```
### Latent Space (6D)
```mermaid
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2A9D8F', 'primaryTextColor': '#fff', 'primaryBorderColor': '#264653', 'lineColor': '#264653'}}}%%
flowchart TB
subgraph PAD["💚 PAD Input"]
P["Pleasure"]
A["Arousal"]
D["Dominance"]
end
subgraph Derived["🧮 Derived Features"]
I["intensity = √(P²+A²+D²)/√3"]
V["valence_sign = sign(P)×|P|^0.5"]
ACT["activation = A × D"]
end
subgraph Latent["📊 6D Latent Vector"]
L0["[0] P"]
L1["[1] A"]
L2["[2] D"]
L3["[3] intensity"]
L4["[4] valence"]
L5["[5] activation"]
end
P --> L0 & I & V
A --> L1 & I & ACT
D --> L2 & I & ACT
I --> L3
V --> L4
ACT --> L5
```
### Hebbian Association
```mermaid
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#E76F51', 'primaryTextColor': '#fff', 'primaryBorderColor': '#9C4230', 'lineColor': '#264653'}}}%%
flowchart LR
subgraph Context["🎯 Context"]
C1["Context 1"]
C2["Context 2"]
C3["Context 3"]
end
subgraph Memory["🧠 Association Memory<br/>(Oja's Rule)"]
W1["w=0.8"]
W2["w=0.3"]
W3["w=0.6"]
end
subgraph Glyphs["✨ Glyphs"]
G1["Glyph A"]
G2["Glyph B"]
G3["Glyph C"]
end
C1 --> |learn| W1 --> G1
C2 --> |learn| W2 --> G2
C3 --> |learn| W3 --> G3
C1 --> |recall| W1
W1 --> |"winner-takes-all"| G1
```
### Similarity Weights (Arousal-Adaptive)
```mermaid
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#F4A261', 'primaryTextColor': '#000', 'primaryBorderColor': '#E76F51', 'lineColor': '#264653'}}}%%
flowchart TB
subgraph Arousal["⚡ Arousal Level"]
LOW["😌 Low (Calm)<br/>|A| ≈ 0"]
HIGH["🔥 High (Urgent)<br/>|A| ≈ 1"]
end
subgraph Weights["⚖️ Stage Weights"]
WL["[0.30, 0.30, 0.25, 0.15]<br/>Balanced processing"]
WH["[0.50, 0.30, 0.15, 0.05]<br/>Coarse priority"]
end
LOW --> WL
HIGH --> WH
subgraph Stages["🎚️ RVQ Stages"]
S1["Stage 1<br/>Coarse"]
S2["Stage 2"]
S3["Stage 3"]
S4["Stage 4<br/>Fine"]
end
WL & WH --> S1 & S2 & S3 & S4
```
### Module Dependencies
```mermaid
graph TD
VG["viva_glyph<br/>(Main API)"]
VG --> ENC["encoder"]
VG --> RVQ["rvq"]
VG --> ASSOC["association"]
VG --> GLY["glyph"]
ENC --> VEC["vector"]
RVQ --> CB["codebook"]
CB --> VEC
ASSOC --> GLY
style VG fill:#0077B6,stroke:#023E8A,color:#FFFFFF
style ENC fill:#00B4D8,stroke:#0077B6,color:#000000
style RVQ fill:#00B4D8,stroke:#0077B6,color:#000000
style ASSOC fill:#2A9D8F,stroke:#264653,color:#FFFFFF
style GLY fill:#E76F51,stroke:#9C4230,color:#FFFFFF
style VEC fill:#F4A261,stroke:#E76F51,color:#000000
style CB fill:#F4A261,stroke:#E76F51,color:#000000
```
## Installation
```sh
gleam add viva_glyph
```
## Usage
```gleam
import viva_glyph
import viva_glyph/encoder.{Pad}
pub fn main() {
// Create encoder
let engine = viva_glyph.new()
// Encode emotional state
let pad = Pad(pleasure: 0.7, arousal: 0.3, dominance: 0.5)
let glyph = viva_glyph.encode(engine, pad)
// => Glyph([142, 87, 23, 201])
// Decode back
let pad2 = viva_glyph.decode(engine, glyph)
// => Pad(pleasure: 0.68, arousal: 0.31, dominance: 0.49)
// Compare glyphs
let similarity = viva_glyph.similarity(glyph, glyph)
// => 1.0
}
```
### Hebbian Learning
```gleam
// Learn: when in context 7, use this glyph
let engine = viva_glyph.learn(engine, 7, glyph)
let engine = viva_glyph.learn(engine, 7, glyph) // strengthen
// Recall: what glyph for context 7?
let recalled = viva_glyph.recall(engine, 7)
```
### Glyph Similarity
```gleam
import viva_glyph/glyph
let a = glyph.new([1, 2, 3, 4])
let b = glyph.new([1, 2, 5, 6])
// Simple similarity (matching tokens / total)
glyph.similarity(a, b) // => 0.5
// Weighted similarity (coarse tokens matter more)
glyph.weighted_similarity(a, b) // => 0.7
// Prefix sharing (coarse structure)
glyph.shares_prefix(a, b, 2) // => True
```
## Modules
| Module | Purpose |
|--------|---------|
| `viva_glyph` | Main API (GlyphEngine) |
| `viva_glyph/vector` | Vector operations for latent space |
| `viva_glyph/codebook` | VQ vocabulary (K centroids) |
| `viva_glyph/rvq` | Residual Vector Quantization |
| `viva_glyph/glyph` | Core Glyph type + similarity |
| `viva_glyph/encoder` | PAD (3D) ↔ Latent (6D) ↔ Glyph |
| `viva_glyph/association` | Hebbian learning |
## Theory
### Residual Vector Quantization (RVQ)
Based on [EnCodec](https://github.com/facebookresearch/encodec) (Défossez et al., 2022):
1. Quantize input → get residual
2. Quantize residual → get finer residual
3. Repeat for N stages
4. Final representation = list of codebook indices
Each stage captures progressively finer detail.
### PAD Model
Pleasure-Arousal-Dominance (Mehrabian, 1996):
- **Pleasure** [-1, 1]: sadness ↔ joy
- **Arousal** [-1, 1]: calm ↔ excitement
- **Dominance** [-1, 1]: submission ↔ control
### Hebbian Learning with Oja's Rule
"Neurons that fire together wire together" (Hebb, 1949) with Oja normalization (Oja, 1982):
```
Δw = η × y × (x - w × y)
```
- **Oja's Rule**: Auto-normalizing weight updates (equilibrium w* = 1.0)
- **Dead neuron prevention**: `y = max(w, ε)` ensures weights escape zero
- **Decay**: Associations weaken without reinforcement
- **Winner-takes-all**: Strongest association wins recall
#### LLM Validation (2025-01-24)
Validated with structured System Prompt specifying Hebbian Association context (x=1.0 fixed, NOT PCA).
| Model | Parameters | Formula | Equilibrium | Dead Neurons |
|-------|------------|---------|-------------|--------------|
| DeepSeek R1-0528 | 671B | ✅ Correct | w* = 1.0 | ✅ Works |
| Qwen3-Coder-480B | 480B | ✅ Correct | w* = 1.0 | ✅ Works |
| DeepSeek-R1-Distill-Qwen-32B | 32B | ✅ Correct | w* = 1.0 | ✅ Works |
| Gemini 2.5 Pro | - | ✅ Correct | w* = 1.0 | ✅ Works |
**Consensus**: Four frontier models unanimously confirm:
- Formula Δw = η × y × (x - w × y) is correct Oja's rule
- Equilibrium w* = 1.0 (solving 1 - w² = 0)
- Dead neuron prevention via y = max(w, ε) works
## Development
```sh
gleam test # Run tests
gleam build # Build
gleam docs build # Generate docs
```
## References
- Défossez, A., et al. (2022). *High Fidelity Neural Audio Compression*. arXiv:2210.13438
- Mehrabian, A. (1996). *Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in temperament*. Current Psychology.
- Hebb, D.O. (1949). *The Organization of Behavior*. Wiley.
- Oja, E. (1982). *Simplified neuron model as a principal component analyzer*. Journal of Mathematical Biology.
- Buechel, S. & Hahn, U. (2023). *Emotion Embeddings*. LREC.
## License
MIT - see [LICENSE](LICENSE)